数据说明
数据名称:中国省市气候风险指数
时间跨度:1993-2023
数据来源:各年中国气候变化蓝皮书
数据范围:省级数据962个样本,31个省份;地级市数据6950个样本,227个地级市。
数据说明
每组CPRI数据包含四个分项指数和一个总指数,涵盖1993年至2023年期间。LTD(极端低温日数)、HTD(极端高温日数)、ERD(极端降雨日数)、EDD(极端干旱日数)是四个子指数,分别代表一个国家/地区一年中极端低温日数、极端高温日数、极端降雨日数和极端干旱日数。这些指数使用下面解释的方法标准化,然后用于构建一般CPRI,它是指一个国家/地区的气候物理风险的总体程度。
测量方法
(1)数据收集
原始气象数据来自NOAA(美国国家海洋和大气管理局)
(2)数据处理过程
第一步:对样本中有大量缺失的数据进行删除
第二步:计算1973年1月1日至1992年12月31日期间每个指标的历史分布
第三步:计算1993年至2023年每个站点的极端天数事件的类型
第四步:计算区域层面的年度极端天气天数
第五步:指数的计算
参考文献
[1] World Meteorological Organization (WMO), State of the global climate 2023,
[2] J. Rising, M. Tedesco, F. Piontek, et al., The missing risks of climate change, Nature 610 (2022) 643–651,
[3] K. Guo, Y. Li, Y. Zhang, Q. Ji, W. Zhao, How are climate risk shocks connected to agricultural markets? J. Commod.Mark. 32 (2023) 100367,
测量方法
LTD(极端低温日数)、HTD(极端高温日数)、ERD(极端降雨日数)、EDD(极端干旱日数)是四个子指数,分别代表一个国家/地区一年中极端低温日数、极端高温日数、极端降雨日数和极端干旱日数。这些指数进行标准化用于构建一般CPRI(气候风险指数),它是指一个国家/地区的气候物理风险的总体程度。
具体指标为Year、Province、City、LTD、HTD、ERD、EED、Climate Physical Risk Index (CPRI)
数据预览
【下载→
方式一(推荐):主页 *个人* 简介
方式二:数据下载方式汇总-CSDN博客