各省、市、县逐年降水量数据(1950-2022年)

资源介绍

1950-2022全国各省、市、县逐年水文数据(降水量)

数据年份:1950-2022年,年度数据

数据范围:

省级数据:全国33省份(含直辖市,香港/台湾);

城市数据:全国371城市地级市、直辖市、地区州盟 ;

区县数据:全国2876区县、市辖区、自治县、县域县级市;

数据来源:欧盟及欧洲中期天气预报中心等组织发布的ERA5-Land数据集!

单位:m

单位换算到mm:需要换算*1000*365

【下载→

方式一(推荐):主页 个人 简介

经管数据集-CSDN博客

方式二:数据下载方式汇总-CSDN博客

### PyTorch实现降水预测模型 #### 构建网络结构 为了构建一个有效的降水预测模型,可以采用卷积神经网络(CNN)与长短时记忆(LSTM)相结合的方式。CNN用于提取空间特征,而LSTM则负责捕捉时间序列上的依赖关系。这种组合能够更好地理解气象数据中的复杂模式。 ```python import torch from torch import nn class CNN_LSTM(nn.Module): def __init__(input_channels, hidden_size, num_layers, output_dim): super().__init__() self.cnn = nn.Sequential( nn.Conv2d(input_channels, 64, kernel_size=3), nn.ReLU(), nn.MaxPool2d(kernel_size=2), nn.Conv2d(64, 128, kernel_size=3), nn.ReLU(), nn.MaxPool2d(kernel_size=2) ) self.lstm = nn.LSTM(128 * 7 * 7, hidden_size, num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, output_dim) def forward(x): out = cnn(x).view(-1, seq_len, 128*7*7) lstm_out, _ = lstm(out) final_output = fc(lstm_out[:, -1, :]) return final_output ``` 此部分定义了一个基础架构来处理输入图像并输出预测值[^1]。 #### 数据准备与预处理 对于降水预测任务来说,高质量的数据集至关重要。通常情况下会涉及到卫星云图、地面观测站记录等多种类型的资料。这些原始数据往往需要经过清洗、标准化等一系列操作才能被用来训练机器学习算法。 - **归一化**: 将所有的数值调整到相同的尺度上。 - **填充缺失值**: 使用插值法或者其他统计手段填补空白处。 - **划分时间段**: 根据实际需求选取适当长度的历史窗口作为输入X,并指定未来某个时刻的目标Y。 #### 训练过程 一旦完成了上述准备工作之后就可以着手于模型的实际训练工作了: ```python criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) for epoch in range(num_epochs): model.train() running_loss = 0. for i, (inputs, labels) in enumerate(train_loader): outputs = model(inputs.float()) loss = criterion(outputs.squeeze(), labels.float()) optimizer.zero_grad() loss.backward() optimizer.step() running_loss += loss.item() print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {running_loss/len(train_loader)}') ``` 这段代码展示了如何设置损失函数以及优化器,并通过循环迭代完成整个训练流程[^4]。 #### 测试评估 当训练完成后还需要对模型的效果做出评价,在测试集中挑选一些样本进行验证是非常必要的步骤之一。此时应该调用`model.eval()`切换至推理状态以获得更稳定的性能表现;同时记得关闭梯度计算从而节省内存资源消耗。 ```python with torch.no_grad(): predictions = [] actuals = [] for inputs, targets in test_loader: pred = model(inputs.float()).squeeze().numpy() act = targets.numpy() predictions.extend(pred.tolist()) actuals.extend(act.tolist()) ``` 最后可以通过绘制图表对比两者之间的差异程度直观感受模型的好坏[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值