一、结果展示
二、核心内容
✅ 六大爬虫核心能力提升
- 精准网页解析:快速定位动态元素,应对网页结构变更
- 智能反爬策略:突破访问频率限制,维持长期稳定采集
- 海量数据存储:设计高效存储方案,轻松应对百万级数据
- 数据清洗实战:处理缺失值、错误内容等常见脏数据问题
- 数据异步处理:帖子内容、图片、视频链接规范存储
- 完整项目实践:从需求分析到成果交付的全流程把控
✅ 数据成品及代码
- 数据集:提供2010-2025 年清洗后的历史数据,约 680 万条
- 答疑服务:包含常见报错解决方案,拓展功能定制
- 持续维护:提供2025年前网站改版应对方案更新,及后续代码更新
三、技术亮点解析
1. 反爬策略
⭐️初级:随机延时(1-5秒)+ 基础 IP 轮换
️⭐️中级:动态识别网页内容 + 隧道代理
2. 数据清洗
⭐️格式标准化:时间戳统一转为YYYY-MM-DD HH:MM:SS
⭐️URL修复:自动补全域名(ttps://
→https://
)
⭐️内容净化:正则过滤广告内容(如"立即开户"类关键词)
3. 百万数据存储方案
⭐️分片策略:分离网络请求与解析,防止数据丢失
⭐️内存优化:每1000条批量写入,避免频繁IO操作
⭐️强自定义:高度自定义,可拓展,附 CSV 文件操作代码
四、应用场景
1. 学术研究
- 计算阅读量/评论量比值识别争议话题
- 追踪高频关键词(如"暴跌"、"利好")波动趋势
如孙鲲鹏,肖星.互联网社交媒体对投资者情绪传染与股价崩盘风险的影响机制[J].技术经济,2018,37(06):93-102.
又如王爱群,王婧怡.社会化媒体对分析师行为的影响——以东方财富股吧讨论为例[J].经济问题,2021,(12):112-119.
2. 量化交易中情绪得分因子
- 研究表明,社交媒体情绪可以作为预测股票市场走势的有效指标
- 可以使用词典方法(如Loughran-McDonald金融情绪词典)或深度学习模型(如BERT、FinBERT)计算市场情绪指数,构建情绪得分(Sentiment Score),然后作为因子加入选股或交易策略中。
- 结合情绪因子与传统因子(如动量、反转、基本面因子)进行选股,例如当市场整体情绪高涨时,增强动量策略,当市场情绪极端悲观时,配置逆向策略。
如刘倩倩.基于情绪择时的量化投资策略研究[D].山东财经大学,2015.
【下载→
方式一(推荐):主页 ↓个人↓简介
方式二:数据下载方式汇总-CSDN博客