680万条!东方财富股吧评论数据+代码(2010-2025年)

一、结果展示

二、核心内容

✅ 六大爬虫核心能力提升

  1. 精准网页解析:快速定位动态元素,应对网页结构变更
  2. 智能反爬策略:突破访问频率限制,维持长期稳定采集
  3. 海量数据存储:设计高效存储方案,轻松应对百万级数据
  4. 数据清洗实战:处理缺失值、错误内容等常见脏数据问题
  5. 数据异步处理:帖子内容、图片、视频链接规范存储
  6. 完整项目实践:从需求分析到成果交付的全流程把控

✅ 数据成品及代码

  1. 数据集:提供2010-2025 年清洗后的历史数据,约 680 万条
  2. 答疑服务:包含常见报错解决方案,拓展功能定制
  3. 持续维护:提供2025年前网站改版应对方案更新,及后续代码更新

三、技术亮点解析

1. 反爬策略

⭐️初级:随机延时(1-5秒)+ 基础 IP 轮换

️⭐️中级:动态识别网页内容 + 隧道代理

2. 数据清洗

⭐️格式标准化:时间戳统一转为YYYY-MM-DD HH:MM:SS

⭐️URL修复:自动补全域名(ttps://https://

⭐️内容净化:正则过滤广告内容(如"立即开户"类关键词)

3. 百万数据存储方案

⭐️分片策略:分离网络请求与解析,防止数据丢失

⭐️内存优化:每1000条批量写入,避免频繁IO操作

⭐️强自定义:高度自定义,可拓展,附 CSV 文件操作代码

四、应用场景

1. 学术研究

  • 计算阅读量/评论量比值识别争议话题
  • 追踪高频关键词(如"暴跌"、"利好")波动趋势

如孙鲲鹏,肖星.互联网社交媒体对投资者情绪传染与股价崩盘风险的影响机制[J].技术经济,2018,37(06):93-102.

又如王爱群,王婧怡.社会化媒体对分析师行为的影响——以东方财富股吧讨论为例[J].经济问题,2021,(12):112-119.

2. 量化交易中情绪得分因子

  • 研究表明,社交媒体情绪可以作为预测股票市场走势的有效指标
  • 可以使用词典方法(如Loughran-McDonald金融情绪词典)或深度学习模型(如BERT、FinBERT)计算市场情绪指数,构建情绪得分(Sentiment Score),然后作为因子加入选股或交易策略中。
  • 结合情绪因子与传统因子(如动量、反转、基本面因子)进行选股,例如当市场整体情绪高涨时,增强动量策略,当市场情绪极端悲观时,配置逆向策略。

如刘倩倩.基于情绪择时的量化投资策略研究[D].山东财经大学,2015.

【下载→

方式一(推荐):主页 ↓个人↓简介

经管数据集-CSDN博客

方式二:数据下载方式汇总-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值