要知道eselasticsearch为什么比关系型数据库快的原因必须先了解2者建立索引的过程
ES建立索引的过程(原理是基于lucene的倒排索引)
第一步:分词、倒排索引(每一个词都有自己的倒排索引的list)
原始文档如下:
索引后:
注意:18,20这些叫做 term,而[1,3]就是posting list
第二步:对team进行排序,通过二分查找形成 term dictionary(b-tree算法)
term dictionary:对team进行排序后二分查找,算法复杂度logN。但是要经历多次磁盘读取(一次random access大概需要10ms的时间)
第三步:为了减少磁盘读取的次数,需要将一些数据缓存到磁盘中,但是term dictionary太大,无法全部放到内存中,于是根据term dictionary建了team index ,term index有点像一本字典的大的章节表,比如:A开头的term ……… Xxx页;C开头的term ……… Xxx页;E开头的term ………Xxx页。如果所有的term都是英文字符的话,是一棵如下的树,这棵树不会包含所有的term,它包含的是term的一些前缀
再次压缩后,term index 的尺寸可以只有所有term的尺寸的几十分之一。
为什么Elasticsearch/Lucene检索可以比mysql快?
Mysql只有term dictionary这一层,是以b-tree排序的方式存储在磁盘上的。检索一个term需要若干次的random access的磁盘操作。而Lucene在term dictionary的基础上添加了term index来加速检索,term index以树的形式缓存在内存中。从term index查到对应的term dictionary的block位置之后,再去磁盘上找term,大大减少了磁盘的random access次数。额外值得一提的两点是:term index在内存中是以FST(finite state transducers)的形式保存的,其特点是非常节省内存。Term dictionary在磁盘上是以分block的方式保存的,一个block内部利用公共前缀压缩,比如都是Ab开头的单词就可以把Ab省去。这样term dictionary可以比b-tree更节约磁盘空间。