笔记记录

http://blog.csdn.net/itplus/article/details/37969635

原始的skip-gram是一种计算语言模型。

看题目中说要训练得到词向量,猜测题目里的skip-gram指的是类似于word2vec中的skip-gram 。那么就以word2vec中的经典模型skip-gram negative sampling来举例说明:

word2vec中的skip-gram negative sampling就是采用skip-gram策略用SGD算法优化以下这个目标函数:

\max_{\forall \mathbf{w}, \mathbf{c}} \sum_{w\in V_w} \sum_{c\in V_c}  \#(w,c) [ \log \sigma(\mathbf{w}^T\mathbf{c}) + k E_{c_N\sim P_{\mathcal{D}}} (\log \sigma(-\mathbf{w}^T\mathbf{c})) ]
这里, \mathbf{w}就是词向量, w是词语, cw的上下文(本质上也是词语), \#(w,c)c出现在 w上下文中的次数。

前面提到『采用skip-gram策略用SGD算法优化』具体来说,就是直接从头到尾扫一遍文档,对每一个位置都使用skip-gram构造多个 w c 词对,并对目标函数的一个分量 \log \sigma(\mathbf{w}^T\mathbf{c}) + k E_{c_N\sim P_{\mathcal{D}}} (\log \sigma(-\mathbf{w}^T\mathbf{c})) 中的两个部分都做梯度下降,并且这里的期望 E_{c_N\sim P_{\mathcal{D}}}采用采样 k次来近似,由于采样出的样本可以看做负样本,所以叫做negative sampling。

优化结束后,得到每个词 w的词向量 \mathbf{w}


作者:li Eta
链接:http://www.zhihu.com/question/29894719/answer/92783887
来源:知乎
著作权归作者所有,转载请联系作者获得授权。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值