http://blog.csdn.net/itplus/article/details/37969635
原始的skip-gram是一种计算语言模型。
看题目中说要训练得到词向量,猜测题目里的skip-gram指的是类似于word2vec中的skip-gram 。那么就以word2vec中的经典模型skip-gram negative sampling来举例说明:
word2vec中的skip-gram negative sampling就是采用skip-gram策略用SGD算法优化以下这个目标函数:
这里, 就是词向量, 是词语, 是 的上下文(本质上也是词语), 是 出现在 上下文中的次数。
前面提到『采用skip-gram策略用SGD算法优化』具体来说,就是直接从头到尾扫一遍文档,对每一个位置都使用skip-gram构造多个 词对,并对目标函数的一个分量 中的两个部分都做梯度下降,并且这里的期望 采用采样 次来近似,由于采样出的样本可以看做负样本,所以叫做negative sampling。
优化结束后,得到每个词 的词向量 。
看题目中说要训练得到词向量,猜测题目里的skip-gram指的是类似于word2vec中的skip-gram 。那么就以word2vec中的经典模型skip-gram negative sampling来举例说明:
word2vec中的skip-gram negative sampling就是采用skip-gram策略用SGD算法优化以下这个目标函数:
这里, 就是词向量, 是词语, 是 的上下文(本质上也是词语), 是 出现在 上下文中的次数。
前面提到『采用skip-gram策略用SGD算法优化』具体来说,就是直接从头到尾扫一遍文档,对每一个位置都使用skip-gram构造多个 词对,并对目标函数的一个分量 中的两个部分都做梯度下降,并且这里的期望 采用采样 次来近似,由于采样出的样本可以看做负样本,所以叫做negative sampling。
优化结束后,得到每个词 的词向量 。
作者:li Eta
链接:http://www.zhihu.com/question/29894719/answer/92783887
来源:知乎
著作权归作者所有,转载请联系作者获得授权。