CSS-VQA 的自我理解

    我们依次介绍V-CSS的的所有步骤,该步骤包括四个主要步骤:初始对象选择(IO_SEL),对象局部贡献计算,关键对象选择(CO_SEL) ,以及动态答案分配(DA_ASS)。

1. Initial Objects Selection (IO_SEL).   通常,对于任何特定的QA对\large (Q, a),图像\large I中只有几个对象是相关的。 为了缩小关键对象的选择范围,首先构造一个较小的对象集,并假定中的所有对象对于回答这个问题可能都是重要的,由于缺少每个样本的关键对象的注释,因此遵循[39]来提取与质量保证高度相关的对象。 具体来说,首先使用spaCy POS标记器[19]将POS标签分配给QA中的每个单词,然后提取QA中的名词。 然后,计算对象类别的GloVe嵌入之间的余弦相似度,并将提取的名词,\large I和QA中所有对象之间的相似度分数记为,我们选择得分最高的对象作为

 

        2. Object Local Contributio

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
OCR-VQA(Optical Character Recognition - Visual Question Answering)数据集评估指标可以根据任务的性质和目标进行选择。以下是一些常用的评估指标: 1. 准确率(Accuracy):在OCR-VQA任务中,最常用的评估指标是准确率。它衡量模型回答问题的正确率。如果模型给出的答案与人工标注的答案完全匹配,则计为1,否则计为0。最终的准确率是所有样本的平均值。 2. Top-k Accuracy:为了考虑到可能存在多个正确答案的情况,可以使用Top-k准确率。在Top-k准确率中,将模型预测的答案与人工标注的答案进行比较,只要模型预测的答案在标注答案的前k个里面,就认为是正确的。Top-k准确率可以更全面地评估模型的性能。 3. 结果排序(Ranking):在OCR-VQA任务中,还可以使用排序评估指标,例如Mean Rank和Median Rank。这些指标衡量模型在给定问题下对所有可能答案的排序性能。较好的模型应该能够将正确答案排在前面。 4. 分布式评估(Distributional Evaluation):除了对单个样本的准确性进行评估,还可以考虑模型对整个标注答案分布的拟合程度。例如,模型的预测分布应与人工标注的分布相似,可以使用KL散度或交叉熵等指标进行评估。 这些指标可以根据具体的OCR-VQA任务和评估需求进行选择和组合。同时,还可以根据任务的特点,设计和使用更加适合的评估指标。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值