深度学习500问阅读笔记——理解One Hot Encodeing原理及作用?

本文是深度学习500问系列笔记,探讨One Hot Encodeing(独热编码)的原理和作用。独热编码将分类特征转换为互斥的二元特征,解决了分类器处理非连续数据的问题,同时也起到了扩充特征的效果。
摘要由CSDN通过智能技术生成

这是深度学习500问系列笔记之一,帮助我深入记忆知识,如有不足,随时欢迎交流和探讨。

11.理解One Hot Encodeing原理及作用?

问题由来

在很多机器学习任务中,特征并不总是连续值,而有可能是分类值。

例如,考虑以下的三个特征:

["male","female"]

["from Europe","from US","from Asia"]

["use Firefox","uses Chrome","uses Safari","uses Internet Explorer"]

如果将上述特征用数字表示,效率会高很多。例如:

["male","from US","uses Internet Explorer"]表示为[0,1,3]

["female","from Asia","uses Chrome"]表示为[1,2,1]

但是,即使转换为数字表示后,上述数据也不能直接用在我们的分类器中。因为,分类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值