Spring-AI与DeepSeek:硅基流动下的AI开发新潮流

Spring-AI与DeepSeek:硅基流动下的AI开发新潮流

人工智能开发新势力来袭

在当今科技飞速发展的时代,人工智能(AI)已成为推动各行业变革的核心力量。从智能语音助手到图像识别技术,从自动驾驶汽车到医疗诊断辅助系统,AI 的应用无处不在,深刻地改变着我们的生活和工作方式。而在 AI 开发领域,有两个名字正逐渐崭露头角,吸引着全球开发者的目光,它们就是 Spring-AI 和 DeepSeek。

Spring-AI 作为一个强大的 Java 框架,正致力于简化包含人工智能功能的应用程序的开发。它从著名的 Python 项目(如 LangChain 和 LlamaIndex)中汲取灵感,却又独具特色,并非简单的移植。其设计理念是为多语言开发者打开 AI 开发的大门,让下一波生成式人工智能应用程序能够在众多编程语言中广泛应用 。通过提供支持多种主流模型提供商(如 OpenAI、Microsoft、Amazon、Google 和 Huggingface 等)的功能,涵盖丰富的模型类型(文本、图像、视频等),以及跨 AI 提供商的可移植 API,Spring-AI 为开发者们提供了极大的便利。

与此同时,DeepSeek 作为国产大模型的佼佼者,凭借媲美 GPT-4 的代码生成能力和行业级解决方案,在 AI 领域掀起了一场生产力革命。其移动应用上线仅 18 天便斩获 1600 万次下载,几乎在全球 140 个市场成为下载量最高的应用,展现出了强大的市场影响力。

而在 Spring-AI 和 DeepSeek 背后,有一个关键的角色 —— 硅基流动,它正悄然改变着 AI 开发的模式,为这两者的快速发展提供了有力支持。那么,硅基流动究竟是如何助力 Spring-AI 和 DeepSeek 实现快速开发人工智能的呢?让我们一同深入探索。

Spring-AI:Java 开发者的 AI 集成利器

(一)Spring-AI 是什么

Spring-AI 是一个专门为 Java 开发者量身打造的应用框架,其诞生的使命是将人工智能功能无缝集成到 Java 应用程序中,从而简化 AI 应用的开发流程。它巧妙地借鉴了 Spring 生态系统的设计精髓,如卓越的可移植性和模块化设计原则,同时大力倡导使用 Plain Old Java Objects(POJO)来构建人工智能领域的应用程序 。这意味着开发者可以充分利用他们熟悉的 Java 开发方式和 Spring 框架的优势,无需从头学习全新的开发模式,就能轻松涉足 AI 开发领域。

Spring-AI 并非是对其他项目的简单复制,尽管它从著名的 Python 项目(如 LangChain 和 LlamaIndex)中汲取了灵感,但它有着自己独特的定位和价值。它的目标是让生成式人工智能应用跨越多种编程语言,为广大 Java 开发者打开 AI 开发的大门,让他们也能在 AI 的浪潮中大展身手。

(二)Spring-AI 的核心功能

自然语言处理(NLP)支持:Spring-AI 为开发者提供了丰富的自然语言处理工具,这些工具宛如一把把锋利的手术刀,能够精准地处理文本数据。开发者可以利用它们执行情感分析,洞察用户的情感倾向,了解用户对产品或服务的满意度;实现语音识别,将语音转化为文本,为语音交互应用的开发奠定基础;还能进行文本分类、命名实体识别等多种自然语言处理任务,为开发智能语言处理应用提供了强大的支持。

支持多模型和向量数据库:在模型支持方面,Spring-AI 堪称强大。它支持各种主流的模型提供商,如 OpenAI、微软、亚马逊、谷歌和 Hugging Face 等,无论你偏好使用哪家的模型,Spring-AI 都能满足你的需求。同时,它支持的模型类型丰富多样,涵盖了聊天机器人、文本生成图像、音频转录、文本转语音等多个领域。在向量数据库方面,Spring-AI 同样表现出色,支持多种主流的向量数据库提供商,如 Apache Cassandra、Azure Vector Search、Chroma、Milvus、Neo4j、PostgreSQL/PGVector、Pinecone、Qdrant、Redis 和 Weaviate 等。这使得开发者可以根据项目的具体需求,灵活选择合适的向量数据库,高效地存储和检索向量数据。

便携 API 和输出映射:Spring-AI 提供了一个跨 AI 服务提供商的便携 API,这个 API 就像是一座桥梁,连接了开发者和不同的 AI 服务。无论你选择哪个模型提供商,都能通过这个统一的 API 进行开发,享受一致的开发体验。而且,它支持同步和流式 API 选项,适用于不同的应用场景。同时,Spring-AI 还能够将 AI 模型的输出映射到 Plain Old Java Objects(POJO),这意味着开发者可以轻松地将 AI 模型的输出集成到现有的 Java 应用程序中,无需进行复杂的数据转换,大大提高了开发效率。

(三)Spring-AI 的优势

简化 AI 集成:对于许多企业和开发者来说,集成人工智能技术往往是一项艰巨的任务,需要处理复杂的基础设施和 API。而 Spring-AI 就像是一位贴心的助手,通过提供一个统一的接口,大大简化了这一过程。开发者只需专注于业务逻辑的实现,无需花费大量时间和精力去处理繁琐的技术细节,就能轻松地将 AI 服务集成到自己的应用程序中。

提高开发效率:Spring-AI 允许开发者使用他们熟悉的 Spring 框架来快速构建带有 AI 功能的应用程序。这意味着开发者可以利用 Spring 生态系统中丰富的工具和库,减少学习新工具和技术所需的时间。同时,Spring-AI 提供的各种功能和抽象,使得开发者可以更高效地实现复杂的 AI 功能,大大缩短了开发周期,提高了开发效率。

跨平台兼容性:Spring-AI 支持多种 AI 服务提供商,这使得企业在选择 AI 服务时具有更大的灵活性。他们不必被绑定在一个特定的服务上,可以根据自身的需求和预算,选择最适合自己的服务商。而且,当企业需要更换服务商时,也可以通过简单的配置变更来实现,无需对代码进行大规模的修改,降低了企业的技术风险和成本。

易于扩展和维护:借助 Spring 框架强大的功能,Spring-AI 可以很容易地与其他 Spring 组件集成。这使得 AI 功能的扩展和维护变得更加简单,开发者可以利用 Spring 的依赖注入、面向切面编程等特性,轻松地对 AI 应用进行扩展和优化。同时,Spring-AI 提供的抽象层和标准化接口,也使得代码的可维护性大大提高,降低了后期维护的成本。

降低技术门槛:对于那些可能缺乏 AI 专业知识的企业和开发者来说,Spring-AI 降低了将 AI 技术融入其产品的门槛。它提供了一系列简单易用的工具和接口,使得即使是没有深厚 AI 背景的 Java 开发者,也能够参与到 AI 应用的开发中来。这为 AI 技术的普及和应用提供了更广阔的空间,让更多的人能够享受到 AI 带来的便利和创新。

DeepSeek:大语言模型的后起之秀

(一)DeepSeek 的背景与发展

DeepSeek 是杭州深度求索人工智能基础技术研究有限公司开发的大语言模型,这家公司成立于 2023 年 7 月 17 日,由量化资管巨头幻方量化创立 。其创始人梁文锋在量化投资和高性能计算领域拥有深厚的背景和丰富的经验,为 DeepSeek 的发展奠定了坚实的基础。

自成立以来,DeepSeek 在大语言模型领域不断深耕,取得了一系列令人瞩目的成果。2023 年 11 月 2 日,它发布了首个开源代码大模型 DeepSeek Coder,该模型支持多种编程语言的代码生成、调试和数据分析任务,为开发者提供了强大的代码编写辅助工具。同年 11 月 29 日,DeepSeek 又推出了参数规模达 670 亿的通用大模型 DeepSeek LLM,包括 7B 和 67B 的 base 及 chat 版本,展现了其在通用语言处理领域的实力。

2024 年,DeepSeek 继续发力,5 月 7 日发布了第二代开源混合专家(MoE)模型 DeepSeek-V2,总参数达 2360 亿,推理成本降至每百万 token 仅 1 元人民币,在模型性能和成本控制上取得了重大突破。到了 12 月 26 日,DeepSeek 发布了 DeepSeek-V3,总参数达 6710 亿,采用创新的 MoE 架构和 FP8 混合精度训练,训练成本仅为 557.6 万美元,再次震惊业界。

进入 2025 年,DeepSeek 的发展势头更加迅猛。1 月 20 日,它发布了新一代推理模型 DeepSeek-R1,性能与 OpenAI 的 o1 正式版持平,并开源,引发了全球范围内的广泛关注。仅仅数日后,DeepSeek 的移动应用便在全球 140 个市场成为下载量最高的应用,登顶苹果中国地区和美国地区应用商店免费 App 下载排行榜,在美区下载榜上超越 ChatGPT,成为了 AI 领域的焦点。

(二)DeepSeek 的技术实力

强大的自然语言处理能力:DeepSeek 拥有强大的自然语言处理能力,宛如一位知识渊博的学者,能够像朋友一样理解并回答各种问题。无论是日常的生活咨询,还是专业领域的知识问答,DeepSeek 都能应对自如。它可以根据用户的提问,快速准确地理解问题的含义,并从海量的知识储备中提取相关信息,给出清晰、准确的回答。在文学领域,它可以分析经典文学作品的主题、人物形象和艺术特色;在科学领域,它能够解答复杂的科学问题,如物理、化学、生物等学科的专业知识;在历史领域,它可以讲述历史事件的背景、经过和影响,帮助用户了解过去的风云变幻。

代码生成与辅助编程:对于开发者来说,DeepSeek 是一位得力的编程助手。它能够辅助写代码,根据用户描述的功能需求,生成相应的代码框架和具体实现。无论是 Python、Java、C++ 等常见编程语言,还是一些新兴的编程语言,DeepSeek 都能熟练掌握。它可以帮助开发者快速生成代码模板,减少重复劳动,提高编程效率。在遇到编程难题时,开发者可以向 DeepSeek 寻求帮助,它能够分析代码中的错误,提供解决方案和优化建议,就像一位经验丰富的导师,引导开发者解决问题。

资料整理与分析:在信息爆炸的时代,资料整理和分析是一项重要的任务。DeepSeek 能够帮助用户整理资料,它可以对大量的文本数据进行分类、归纳和总结,提取关键信息,生成简洁明了的报告。在进行市场调研时,DeepSeek 可以收集和分析市场数据、行业报告等资料,为企业提供市场趋势分析和竞争态势评估;在学术研究中,它可以帮助研究者整理文献资料,快速了解相关领域的研究现状和前沿动态,为研究工作提供有力的支持。

复杂数学问题解决:DeepSeek 还具备解决复杂数学问题的能力,它就像一位数学高手,能够处理各种数学运算和逻辑推理。无论是代数、几何、微积分等基础数学问题,还是概率论、数理统计等高级数学问题,DeepSeek 都能轻松应对。它可以帮助学生解决数学作业中的难题,提供详细的解题步骤和思路;在科研和工程领域,DeepSeek 可以协助研究人员和工程师进行复杂的数学建模和计算,为项目的顺利进行提供保障。

(三)DeepSeek 的应用成果

全球下载量与用户量成绩斐然:DeepSeek 的移动应用上线仅 18 天便斩获 1600 万次下载,几乎在全球 140 个市场成为下载量最高的应用,这一成绩令人惊叹。截至 1 月 25 日,根据市场追踪机构 App Figures 的数据,DeepSeek 应用程序的下载量已达 160 万次。在 1 月 26 日,DeepSeek 登顶美区 App Store 免费榜第六,超越 Google Gemini 和 Microsoft Copilot 等产品。短短数日,其日活用户迅速突破 1500 万,硅谷一线风投 a16z 的创始人 Marc Andreessen 也转发了相关的对比数据,显示 DeepSeek 日活已经达到了 ChatGPT 的 23%。这些数据充分证明了 DeepSeek 在全球范围内的受欢迎程度和影响力。

与车企的合作成果显著:在汽车领域,DeepSeek 正加速 AI 大模型上车,与多家车企展开了深度合作。2 月 6 日,吉利汽车宣布,其自研的星睿大模型与 DeepSeek-R1 深度融合。吉利汽车将利用 DeepSeek-R1 模型对星睿车控 FunctionCall 大模型、汽车主动交互端侧大模型等进行蒸馏训练。融合后的 AI 系统不仅能精准理解用户的模糊意图,准确调用约 2000 个车载接口,而且能基于车内外场景主动分析用户潜在需求,提供车辆控制、主动对话、售后等服务,大幅提升智能交互体验。

2 月 7 日,极氪也官宣旗下自研 Kr AI 大模型与 DeepSeek R1 大模型完成了深度融合,并且智能座舱助手 AI Eva 也已集成并即将上线。同日,岚图汽车也称其智能座舱已经与 DeepSeek 完成深度融合,并计划在 2 月 14 日开启 DeepSeek 全民知识蒸馏训练,岚图知音和梦想家将率先搭载,岚图知音将成为汽车行业首个融合 DeepSeek 的量产车型。

2 月 8 日,又有 5 家车企宣布接入 DeepSeek。宝骏汽车宣布,其灵语智舱与 DeepSeek 大模型已完成深度融合,宝骏享境完成实车装载,未来,宝骏云海、宝骏悦也 Plus 等车型也将陆续通过 OTA 实现应用。智己汽车宣布,其智能座舱也已深度引入 DeepSeek 大模型,并与豆包、通义等大模型合作,通过深度联合训练,构建多场景插拔式 AI 矩阵平台。东风汽车宣布,公司旗下自主品牌已完成 DeepSeek 全系列大语言模型接入工作,并将于近期陆续搭载应用在东风岚图、东风猛士、东风奕派、东风风神、东风纳米等公司旗下自主品牌车型。零跑汽车宣布,部署 DeepSeek-R1 的零跑全新座舱即将上线,目前,小零 GPT 大模型已接入 DeepSeek-R1,同时,DeepSeek-R1 大模型已在零跑内部 IT 团队运营部署,辅助工作提效。长城汽车 CTO 吴会肖 2 月 8 日在微博上发文宣布,DeepSeek 的 demo 在长城汽车上已经跑通,Coffee Agent 已完成融合适配,长城汽车自主研发的 Coffee Agent 大模型已与 DeepSeek 完成深度融合,助力 DeepSeek 带来的 “算力平权” 革命,力推智能服务的全面普及,长城汽车 Coffee Agent 将融合 DeepSeek R1 模型的特点,增强 Coffee Agent 的理解、思考和推理能力。

通过与这些车企的合作,DeepSeek 为汽车智能化发展注入了强大动力,提升了汽车的智能交互体验和驾驶安全性,推动了整个汽车行业的智能化升级。

硅基流动:AI 快速开发的催化剂

(一)硅基流动概念解析

硅基流动(SiliconCloud)是硅基流动公司推出的一站式大模型云服务平台,宛如一位全能的助手,致力于为开发者和企业提供高效、低成本且全面的生成式人工智能(GenAI)模型服务,涵盖了 IaaS(基础设施即服务)、PaaS(平台即服务)和 MaaS(模型即服务) 。其核心目标是通过优化大模型使用体验,帮助用户实现 “Token 自由”,即以更低成本和更高效率使用先进的大语言模型(LLMs)及其他生成式人工智能(AI)模型。

硅基流动由清华大学高性能计算研究所孙广宇教授团队创立,公司核心团队来自清华大学、MIT 等顶尖高校,在高性能计算和 AI 系统方面有着深厚的技术积累。其主要产品和服务包括 SiliconLLM(高性能 LLM 推理引擎,支持各种主流大语言模型的高效部署)、SiliconCloud(一站式 AI 云计算平台,提供 LLM 训练推理等服务)和 OneDiff(开源的 AI 编译框架,可自动优化 AI 模型性能) 。这些产品和服务凭借深厚的系统优化技术,大幅提升了 AI 模型的计算效率,帮助企业降低了 AI 部署成本。

(二)硅基流动如何助力 AI 开发

丰富的大模型支持:硅基流动平台集成了多种主流开源大模型,宛如一个庞大的模型宝库,为开发者提供了丰富的选择。在文本生成模型方面,有性能卓越的 DeepSeek R1 与 V3,它们在自然语言处理任务中表现出色,能够生成高质量的文本;Qwen2.5 在语言理解和生成上也有着独特的优势;GLM-4 展现出强大的语言能力;Llama-3.X、Gemma-2、InternLM、Yi-1.5 等模型也各有千秋,满足不同开发者的需求。在图片生成模型领域,平台支持 Janus-Pro、Stable Diffusion (SDXL)、FLUX 等,能够帮助开发者实现从文本到图像的创意转化,为图像生成应用的开发提供了有力支持。此外,平台还支持文本生成语音、文本生成图像、文本生成视频等多模态模型,以及代码生成模型如 Qwen2.5-Coder-32B-Instruct 等,满足了不同领域的开发需求。

高性价比的 API 调用服务:硅基流动提供行业内较低的 API 调用价格,让更多的开发者和企业能够负担得起。例如,Qwen2-72B 模型的调用费用仅为 4.13 元 / 百万 Token,这一价格优势使得开发者在使用大模型时能够降低成本,提高经济效益。对于 9B 及以下的模型,平台更是提供永久免费 API 服务,这对于个人开发者及小型项目来说,无疑是一个巨大的福利,让他们能够在无需承担高昂费用的情况下,使用顶尖大模型进行实验和创新,降低了 AI 开发的门槛,促进了 AI 技术的普及和应用。

推理加速与性能优化:平台内置了强大的推理加速引擎,如 SiliconLLM 和 OneDiff,这些引擎宛如性能优化大师,能够显著提升模型的响应速度及生成效率。在处理大规模数据和复杂任务时,能够快速给出准确的结果,大大提高了开发效率。同时,平台支持大模型的微调与托管,用户可根据自定义数据优化模型性能。开发者可以根据项目的具体需求,对模型进行个性化的调整和优化,使其更好地适应特定的业务场景,提高模型的实用性和准确性。

便捷的使用体验:用户无需自建硬件或进行复杂配置,只需通过 API 调用模型,就能轻松使用各种大模型服务。这就好比使用智能手机的应用程序一样简单,用户无需了解手机的内部构造和复杂的技术原理,只需通过简单的操作就能享受各种功能。平台提供统一的 API 接口,支持多种模型的无缝切换,开发者可以根据项目的需求,在不同的模型之间轻松切换,而无需担心接口的兼容性问题,显著提升了开发效率。此外,平台还提供免费体验中心(Playground),用户可直接测试文本生成、图像生成、文本生成语音、文本生成视频等功能,让用户在使用之前能够先体验模型的功能和效果,做出更明智的选择。同时,平台提供详尽的文档和社区支持,降低了开发门槛,促进了开发者之间的交流和合作,让开发者能够更快地掌握平台的使用方法,解决开发过程中遇到的问题。

(三)硅基流动与 Spring-AI、DeepSeek 的合作模式

硅基流动与 Spring-AI、DeepSeek 之间形成了紧密的合作关系,通过 API 调用的方式,实现了优势互补,为 AI 开发带来了新的机遇。在 Spring AI 项目中,开发者可以通过硅基流动提供的 API,轻松接入 DeepSeek 大模型。具体来说,开发者只需在 Spring AI 项目的配置文件中,设置硅基流动的 API 地址和密钥,以及选择要使用的 DeepSeek 模型,就可以在项目中调用 DeepSeek 的强大功能。在开发一个智能客服应用时,开发者可以利用 Spring AI 的框架搭建应用的基础架构,然后通过硅基流动的 API 接入 DeepSeek 模型,实现自然语言处理和对话功能。这样,开发者无需关注底层的基础设施和模型部署细节,就能够专注于应用的业务逻辑和功能实现,大大缩短了开发周期,提高了开发效率。

通过这种合作模式,Spring-AI 的开发者可以利用 DeepSeek 强大的自然语言处理能力和硅基流动提供的高效、低成本的模型服务,快速构建出功能强大的 AI 应用。而 DeepSeek 则可以借助 Spring-AI 的广泛应用和硅基流动的平台优势,扩大其模型的应用范围,提升其市场影响力。硅基流动也在这个过程中,为 Spring-AI 和 DeepSeek 的合作提供了桥梁和纽带,促进了双方的共同发展,推动了 AI 技术的创新和应用。

基于 Spring-AI 和 DeepSeek,借助硅基流动开发人工智能的实战案例

(一)搭建智能对话机器人

接下来,我们将通过一个具体的实战案例,展示如何基于 Spring-AI 和 DeepSeek,借助硅基流动快速开发一个智能对话机器人。

环境准备:首先,确保你的开发环境满足以下要求:安装 JDK 17 及以上版本,这是项目运行的基础;准备 Maven 或 Gradle 构建工具,用于项目的依赖管理和构建;获取 DeepSeek API Key,由于官网开放平台的一些情况,我们这里使用硅基流动 + 华为云推出的 DeepSeek-V3/R1 服务;创建一个 Spring Boot 3.2 及以上版本的项目,作为我们的开发框架。同时,你可以关注相关公众号,回复 “机器人” 获取项目源码作为参考。

项目创建:在创建项目时,我们使用 IDEA 作为开发工具,结合 Spring Boot 3.4 和 Spring AI 1.0.0-SNAPSHOT,以及 Maven 进行项目管理。在项目中使用硅基流动提供的 DeepSeek API 服务,该接口需要付费,但默认注册会赠送 14 元体验费用。注册成功后,在官网创建密钥。然后,在 application.properties 文件中添加如下配置:

spring.ai.openai.base-url=https://api.siliconflow.cn
spring.
### Python DeepSeek API 使用教程 为了帮助开发者更好地理解和使用 Python 中的 DeepSeek API,以下是流动平台的相关信息和操作指南。 #### 配置环境 在开始之前,确保已经安装了必要的库。通常情况下,`requests` 库用于发起 HTTP 请求: ```bash pip install requests ``` #### 获取API密钥 访问流动官网注册账号并获取个人专属的 API 密钥[^1]。此密钥将在后续请求头中作为认证凭证使用。 #### 发起础请求 下面是一个简单的例子来展示如何构建一个本的 POST 请求到 DeepSeek 的语音合成服务端点: ```python import requests url = "https://api.siliconflow.cn/v1/audio/speech" headers = { 'Authorization': 'Bearer YOUR_API_KEY' } data = { "model": "FunAudioLLM/CosyVoice2-0.5B", "input": "八百标兵奔北坡,炮兵并排北边跑。", "voice": "FunAudioLLM/CosyVoice2-0.5B:anna", "response_format": "mp3", "sample_rate": 32000, "stream": False, "speed": 1, "gain": 0 } response = requests.post(url, headers=headers, json=data) if response.status_code == 200: with open('output.mp3', 'wb') as f: f.write(response.content) else: print(f"Error occurred: {response.text}") ``` 这段代码展示了如何发送带有特定参数的数据包给服务器,并保存返回的声音文件为 MP3 格式[^4]。 #### 实际应用场景——智能客服 当涉及到更复杂的应用场景时,比如创建一个智能客服应用程序,可以借助 Spring AI 框架快速搭建应用结构,再通过调用上述提到的流动所提供的 API 来增强其 NLP 和对话管理能力[^2]。 #### 参考官方GitHub资源 对于更多高级特性和最佳实践案例的学习,建议查阅 GitHub 上由 DeepSeek 维护的一个优秀集成仓库中的中文说明文档[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiatian_win123

您的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值