顺序统计学总结

本文探讨了如何在无序序列中以线性时间复杂度找到中位数,即第k小的数,通过顺序统计学算法,基于快速排序的partition函数和分治法思想。介绍了在最坏情况、最好情况和期望运行时间下的性能,并提到了一种保证最坏情况仍为线性时间的算法。此外,还涉及了一道百度面试题,要求在O(n)时间和O(1)空间复杂度内,使数组中的负数位于正数左侧且保持元素相对位置不变。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果要转载,需要注明出处:  http://blog.csdn.net/xiazdong


先来看一个问题:“给定一个无序的序列, 求序列的中位数。”
正常的答案都是“先排序,再取A[n/2],花费 O (nlgn)”,学习完本文后,发现其实能够在 O (n)求出中位数。
但是要注意,有些场景下前一种方法更好,比如说:“要分别求第1个顺序统计量、第二个顺序统计量、第三个顺序统计量、....、第n个顺序统计量 ”,如果使用“先排序后取”的方法只要   O  (nlgn),但是后一种方法,则要 O (n^2)(n次select方法)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值