Pascal’s Triangle 系列
LeetCode上有两道关于Pascal’s Triangle的问题,问题一比较简单,问题二有个比较有意思的知识点。纪录如下:
118.Pascal’s Triangle
介绍
Given numRows, generate the first numRows of Pascal’s triangle.
For example, given numRows = 5,
Return
[
[1],
[1,1],
[1,2,1],
[1,3,3,1],
[1,4,6,4,1]
]
解答
这道题比较简单,因为每次都把上行的数据存储了起来,所以我们计算新的数据的时候,只要从上行中取出想要的数据就可以了。
class Solution {
public:
vector<vector<int>> generate(int numRows) {
if(numRows <= 0) return vector<vector<int>>();
vector<vector<int>> res(1,vector<int>(1,1));
for(int i = 1; i < numRows; ++i)
{
vector<int> Row(i+1,1);
for(int j = 1; j < i; ++j)
{
Row[j] = res[i-1][j-1] + res[i-1][j];
}
res.push_back(Row);
}
return res;
}
};
119. Pascal’s Triangle II
介绍
Given an index k, return the kth row of the Pascal’s triangle.
For example, given k = 3,
Return [1,3,3,1].
解答
这一题中只要求返回给定行的数据,题目要求的关键点在于如何以O(k)的存储空间来进行完成功能。
关键在于我们每次生成数据的时候,不再是从数组前端开始,而是从末尾元素开始。因为对于res[j] = res[j]+res[j-1],如果j从前往后进行计算新数据,就会覆盖后续所要使用的数据,但是如果j从后往前计算新数据,就不会覆盖原有的数据。
class Solution {
public:
vector<int> getRow(int rowIndex)
{
vector<int> res(rowIndex+1,1);
for(int i = 2; i <= rowIndex;++i)
for(int j = i-1; j >= 0;--j)
res[j] = res[j] + res[j-1];
return res;
}
}