分支界限法-最短路径问题

概要
在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。

分支限界法与回溯法的不同

(1)求解目标:回溯法的求解目标是找出解空间树中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出在某种意义下的最优解。

(2)搜索方式的不同:回溯法以深度优先的方式搜索解空间树,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树。
问题描述
在下图所给的有向图G中,每一边都有一个非负边权。要求图G的从源顶点s到目标顶点t之间的最短路径。
最短路径问题代码

#include <iostream>
#include <vector>
#include <queue>
#include <limits>
#include <iterator>
using namespace std;

struct node_info
{
public:
    node_info (int i,int w) 
        : index (i), weight (w) {}
    node_info () 
        : index(0),weight(0) {}
    node_info (const node_info & ni) 
        : index (ni.index), weight (ni.weight) {}

    friend 
    bool operator < (const node_info& lth,const node_info& rth) {
        return lth.weight > rth.weight ; // 为了实现从小到大的顺序
    }

public:
    int index; // 结点位置
    int weight; // 权值
};

struct path_info 
{
public:
    path_info ()
        : front_index(0), weight (numeric_limits<int>::max()) {}

public:
    int front_index;
    int weight;
};

// single source shortest paths
class ss_shortest_paths
{

public:
    ss_shortest_paths (const vector<vector<int> >& g,int end_location) 
        :no_edge (-1), end_node (end_location), node_count (g.size()) , graph (g) 
    {}

    // 打印最短路径
    void print_spaths () const {
        cout << "min weight : " << shortest_path << endl;
        cout << "path: " ;
        copy (s_path_index.rbegin(),s_path_index.rend(),ostream_iterator<int>(cout,""));
        cout << endl;
    }

    // 求最短路径
    void shortest_paths () {
        vector<path_info> path(node_count);
        priority_queue<node_info,vector<node_info> > min_heap;
        min_heap.push (node_info(0,0));    // 将起始结点入队

        while (true) {
            node_info top = min_heap.top ();    // 取出最大值
            min_heap.pop ();

            // 已到达目的结点
            if (top.index == end_node) {
                break ;
            }
            // 未到达则遍历
            for (int i = 0; i < node_count; ++ i) {
                // 顶点top.index和i间有边,且此路径长小于原先从原点到i的路径长 
                if (graph[top.index][i] != no_edge && 
                    (top.weight + graph[top.index][i]) < path[i].weight) {
                    min_heap.push (node_info (i,top.weight + graph[top.index][i]));
                    path[i].front_index = top.index;
                    path[i].weight = top.weight + graph[top.index][i];
                }
            }
            if (min_heap.empty()) {
                break ;
            }
        }

        shortest_path = path[end_node].weight;
        int index = end_node;
        s_path_index.push_back(index) ;
        while (true) {
            index = path[index].front_index ;
            s_path_index.push_back(index);
            if (index == 0) {
                break;
            }
        }
    }

private:
    vector<vector<int> >    graph ;            // 图的数组表示
    int                        node_count;        // 结点个数
    const int                no_edge;        // 无通路
    const int                end_node;        // 目的结点
    vector<int>                s_path_index;    // 最短路径
    int                        shortest_path;    // 最短路径
};

int main()
{
    const int size = 11; 
    vector<vector<int> > graph (size);
    for (int i = 0;i < size; ++ i) {
        graph[i].resize (size);
    }
    for (int i = 0;i < size; ++ i) {
        for (int j = 0;j < size; ++ j) {
            graph[i][j] = -1;
        }
    }
    graph[0][1] = 2;
    graph[0][2] = 3;
    graph[0][3] = 4;
    graph[1][2] = 3;
    graph[1][5] = 2;
    graph[1][4] = 7;
    graph[2][5] = 9;
    graph[2][6] = 2;
    graph[3][6] = 2;
    graph[4][7] = 3;
    graph[4][8] = 3;
    graph[5][6] = 1;
    graph[5][8] = 3;
    graph[6][9] = 1;
    graph[6][8] = 5;
    graph[7][10] = 3;
    graph[8][10] = 2;
    graph[9][8] = 2;
    graph[9][10] = 2;

    ss_shortest_paths ssp (graph, 10);
    ssp.shortest_paths ();
    ssp.print_spaths ();
    return 0;
}

运行结果

min weight : 8
path: 026910

方法理解
整体思想:如暴力破解,就是遍历所有可能的路线然后选择一个最近的。分支界限法,和暴力破解的不同在于,遇到节点时,就做一次选择,这样提前将不可能的路线提前消除。

  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值