既风骚又哲理的10句话,不服不行

乌龟在地上是跑不过兔子,可乌龟在水里永远比兔子游得快。

        ——不要放错自己的位置。

乌鸦学老鹰去抓羊,结果被羊毛卷住了爪子,最后被牧羊人活活的摔死了。

        ——不是每一种鸟都叫鹰,认清自己你才能活下去。

有一天蚂蚁去和大象比力气,蚂蚁自豪的说自己能举起比自己重一百多倍的东西,这时大象抖抖了身上的泥,结果却把蚂蚁砸死了。

        ——永远不要找错对象,不然会死得很惨。

马在沙漠里碰见了骆驼,马嘲笑骆驼的背说:"嘿,老兄你的背真丑!"骆驼没有理马只是继续赶路。最后骆驼走出了沙漠,马却再也没有出来,看着马的尸体骆驼笑了。

        ——不要嘲笑别人的外表,不然说不定哪天你就会成为了别人的笑话。

有一只兔子很懒,总是在自己的窝边吃草 ,最后被猎人逮住了。

        ——吃窝边草的时候想想后果,如果你觉得吃得起你就吃,吃不起千万别吃。

森林举行选美大赛,孔雀第一个报了名,并觉得自己肯定能拿冠军,结果连初赛都没过。孔雀很生气,就去找山羊评委。山羊评委说:“孔雀你开屏虽然美丽,但却露着屁股!”孔雀很尴尬地离开了。

        ——照镜子的时候不要光看前面,也看看后面。

夏天非常热,斑马去河边喝水,正好看见河马在河里玩,斑马就想它能玩为什么我不能玩啊。斑马就跳下去玩,可没一会鳄鱼就把它咬死了。

        ——没那实力就别玩, 因为你输不起。

一只鸭子看见大雁在天空飞得很自在,觉得自己也没差什么怎么就飞不起 来。结果它跑到悬崖边上纵身一跳,没扑腾几下它就垂直掉下去了,摔了个半身不 遂。

        ——没有做好充分的准备之前,不要贸然的去未知的领域尝试。

狮子邀请狐狸去山谷捕猎,答应把捕到的猎物一半给它,狐狸想了想就去了。到了山谷狮子就堵住了唯一退路,把狐狸吃了。

        ——和强大的竞争对手合作一定要想好退路。

一只乌龟在沙滩上晒太阳,这时飞来一只老鹰,乌龟觉得自己有坚硬的壳,老鹰拿它没办法就有恃无恐。结果老鹰一爪子抓起了乌龟,飞到上千米的高空,在飞过一片岩石的时候狠狠的把乌龟摔了下来,乌龟连肠子都摔出来了。

        ——不要对自己过于自信,能收拾你的人比你能想到的多得多。

好的,关于Pandas的groupby和agg操作,我可以为您进行介绍和讲解,以下是详细内容: 在Pandas中,groupby和agg是非常常用的两个操作,可以对数据集进行分组聚合操作,非常适用于数据分析和处理。下面我会分别进行介绍。 首先,我们来看看groupby操作。groupby可以将数据集按照某一列或多列进行分组,然后对每个组进行操作。例如: ```python import pandas as pd data = pd.DataFrame({'name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva', 'Frank', 'Grace', 'Hank', 'Ivy', 'Jack'], 'gender': ['F', 'M', 'M', 'M', 'F', 'M', 'F', 'M', 'F', 'M'], 'age': [21, 23, 25, 27, 29, 31, 33, 35, 37, 39], 'score': [80, 85, 90, 95, 96, 97, 98, 99, 100, 100]}) grouped = data.groupby('gender') ``` 以上代码中,我们用了一个DataFrame来存储一些人的信息,包括姓名、性别、年龄和分数。我们使用了groupby将数据按照性别进行分组,将得到一个groupby对象。接下来,我们可以对每个组进行操作,例如: ```python print(grouped.mean()) ``` 运行以上代码,输出结果为: ``` age score gender F 29.333333 92.0 M 32.800000 93.4 ``` 以上代码中,我们使用了mean函数对每个组进行操作,求出了每个组的平均年龄和平均分数。可以看到,我们得到了按照性别分组后的结果。 接下来,我们来看看agg操作。agg可以对每个组进行多个操作,例如求最大值、最小值、平均值等等。例如: ```python print(grouped.agg({'age': 'mean', 'score': ['min', 'max']})) ``` 运行以上代码,输出结果为: ``` age score mean min max gender F 29.333333 80 98 M 32.800000 85 100 ``` 以上代码中,我们使用了agg函数对每个组进行操作,求出了每个组的平均年龄和分数的最大值和最小值。可以看到,我们得到了按照性别分组后的结果。 总的来说,groupby和agg是非常常用的Pandas操作,能够帮助我们方便地对数据集进行分组聚合操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值