pyspark orderBy drop_uplicates 保留第一条数据

本文介绍如何在 Spark SQL 中正确实现数据去重,特别是针对需要保留首个记录的情况。通过对比错误做法与正确实现,文章详细解释了利用窗口函数进行精确去重的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# 这样无法保留第一个数据
user_df = user_df.orderBy("dt", ascending=False).drop_duplicates(subset=["username"])

# 需要这样使用,dt 倒排,只保存第一个
rank_window = Window.partitionBy("username").orderBy(F.col("dt").desc())
user_df = user_df.withColumn('rank', F.rank().over(rank_window)).where(F.col("rank") == 1).drop('rank').orderBy("dt", ascending=False).drop_duplicates(subset=["username"])
user_df.cache().count()


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值