递归算法 汉诺塔 排列组合

递归:就是在运行过程中调用自己。

构成递归的条件:

a>子问题与原始问题为同样的事,且更为简单;

b>不能无限制的调用自身,必须有一个出口,化简为非递归状况处理。

 

举个简单的例子: 

阶乘, 比如 5! = 5*4*3*2*1 = 120

实现起来就是这样: 

 

int factorial(int n){
	if (n == 1)
		return 1;
	else 
		return n*factorial(n - 1);
}

 

函数执行流程如下图所示:

上述内容让我们对递归有了简单的认识和了解

下面让我们来实战两个递归的应用来更进一步的了解递归:

 

实战1:汉诺塔问题

简述:有A、B、C三个柱子,将A柱子上的n个圆盘借助于B柱子全部移动到C柱子,大圆盘不能放在小圆盘上面。

解:

(1)  n==1

  第1次 A ---> C   共1次移动

(2)  n==2

 第1次 A ---> B  

 第2次 A ---> C

 第3次 B ---> C  共3次移动

(3)  n==3

 

 第1次  A ---> C  

 第2次 A ---> B

 第3次 C ---> B   

 第4次  A ---> C 

 第5次 B ---> A

 第6次 B ---> C 

 第7次 A ---> C 共7次移动

下面我们就看看代码是如何实现的:

 

void move(int plateNum, char F, char T)
{
	cout << F << " ---> " << T << endl;
}

// num:圆盘数量  A B C 分别代表三棵柱子
void hanio(int num, char A, char B, char C)
{
	if (num == 1)
		move(1, A, C);
	else
	{
		hanio(num - 1, A, C, B);
		move(num, A, C);
		hanio(num - 1, B, A, C);
	}
}

 

实战2:排列组合问题

求数组 int a[3] = {1, 2, 3}的所有组合方式,并输出。 (结果:123, 132, 213, 231, 312, 321)

简单说明一下思路:

这里我实现了个模板类  Perm.h

 

#pragma once

#include <iostream>
using namespace std;

template<class T>
void Perm(T list[], int k, int m)
{
	int i;
	if (k == m)
	{
		for (i = 0; i <= m; i++)
			cout << list[i];
		cout << endl;
	}
	else
	{
		for (i = k; i <= m; i++)
		{
			Swap(list[k], list[i]);
			Perm(list, k+1, m);
			Swap(list[k], list[i]);
		}
	}
}

template<class T>
inline void Swap(T&a, T&b)
{
	T temp = a;
	a = b;
	b = temp;
}

调用方法:

int _tmain(int argc, _TCHAR* argv[])
{
	int list[3] = { 1, 2, 3 };
	Perm(list, 0, 2);

	return 0;
}

 

©️2020 CSDN 皮肤主题: 创作都市 设计师:CSDN官方博客 返回首页