备考2024年AMC10数学竞赛:2000-2023年1250道AMC10真题练一练

本文分享了2000-2023年AMC10竞赛的真题精选,涵盖相遇问题、排列、数论等数学知识点,同时介绍了六分成长提供的在线练习资源,旨在帮助学生有效备考并提升数学能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我整理了2000-2023年的全部AMC10的AB卷真题共1250题,并且独家制作了多种在线练习,利用碎片化时间,一年足以通过自学在2024年AMC10竞赛中取得好成绩。

我们今天继续来随机看五道题目和解析。

2000-2023年AMC10真题练一练:2003年第1题

这道题是第1题,属于简单的相遇问题。先算相遇时花费的时间=45/(18+12)=1.5小时,所以距离A的距离=Alicia骑行的距离=18*1.5=27公里,送E。

2000-2023年AMC10真题练一练:2023年第9题

这道题考的是技术方法,属于排列的一种。分析后采取枚举法。

因为八位日期中的每个数字要出现偶数次,而前面年份的四个数字是固定的2023,所以后4个数字中,0和3必须要出现且只出现1次(不能出现3次,否则月和日不对),另外两个数字只能是都是1或者都是2。

  • 情况一:后面四位数是2203,有两种:0322、0223。
  • 情况二:后面四位数是1103,有七种:0113、0131、0311、1103、1013、1031、1130。

共有9种情况满足条件。选E。

2000-2023年AMC10真题练一练:2023年第23题

第23题属于难度比较高的题目。

这道题目考的是数论整数方程。根据题目条件,可以假设N=x(x+20)=y(y+23),这是二次整数方程,可以通过配方后因式分解求解。计算过程如下:

解以上方程得到x=22,y=21,所以N=22(22+20)=924,数字之和为15。

提醒:计算一个整数的各位数字之和在AMC的考题中经常出现,注意审题。

2000-2023年AMC10真题练一练:2018年第25题

这道题是当年度最后一道压轴题,难度等级较高。

2000-2023年AMC10真题练一练:2007年第17题

这道题考的是数论,不定方程。根据题意,将方程75*m=n^3变成:5*5*3*m=n3,要使得左边是个完全立方,因此m的因子中,至少含有5*3*3=45,此时m的最小值,此时的最小值为15,所以m+n=60,选D。

提醒:这道题当时有考生反馈说75m理解成了m是一个数字,这个三位数就是75*。没有理解成是75*m,所以一直解答不出来。遇到这种情况果断理解为75m为75乘以m。不过这种只能是多做积累经验。


六分成长针对AMC10备考资源,欢迎了解更多

上述六分成长独家制作的在线练习题,符合学习和认知心理学,来源于完整的历年AMC8和AMC10真题,并且会持续更新。AMC8和AMC10备考可用,反复练习,也有利于小学、初中数学能力提升。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

新的成长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值