Python深度学习(新闻分类:多分类问题)--学习笔记(六)

3.5 新闻分类:多分类问题

  • 本节会构建一个网络,将路透社新闻划分为46个互斥的主题。因为有多个类别,所以这是多分类(multiclass classification)问题的一个例子。因为每个数据点只能划分到一个类别,所以更具体地说,这是单标签、多分类(single-label, multiclass classification)问题的一个例子。如果每个数据点可以划分到多个类别(主题),那它就是一个多标签、多分类(multilabel, multiclass classification)问题。
3.5.1 路透社数据集
  • 本节使用路透社数据集,它包含许多短新闻及其对应的主题,由路透社在1986年发布。它是一个简单的、广泛使用的文本分类数据集。它包括46个不同的主题:某些主题的样本更多,但训练集中每个主题都有至少10个样本。
# 加载路透社数据集
from keras.datasets import reuters

(train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words=10000)
  • 与IMDB数据集一样,参数num_words=10000将数据限定为前10000个最常出现的单词。我们有8982个训练样本和2246个测试样本。
  • 与IMDB评论一样,每个样本都是一个整数列表(表示单词索引)
# 将索引解码为新闻文本
word_index = reuters.get_word_index()
reverse_word_index = dict([(value, key) for key, value in word_index.items()])
decoded_newswire = ' '.join([reverse_word_index.get(i-3,'?') for i in train_data[0]]) # 注意,索引减去了3,因为0、1、2是为"padding"(填充)、"start of sequence"(序列开始)、"unknown"(未知词)分别保留的索引。
3.5.2 准备数据
# 编码数据
import numpy as np

def vectorize_sequence(sequence, dimension=10000):
    results = np.zeros((len(sequence), dimension))
    for i, sequence in enumerate(sequence):
        results[i, sequence] = 1.
    return results

x_train = vectorize_sequence(train_data) # 将训练数据向量化
x_test = vectorize_sequence(test_data) # 将测试数据向量化
  • 将标签向量化有两种方法:你可以将标签列表转换为整数张量,或者使用one-hot编码。one-hot编码是分类数据广泛使用的一种格式,也叫分类编码(categorical encoding)。标签的one-hot编码就是将每个标签表示为全零向量,只有标签索引对应的元素为1。
# 标签向量化
def to_one_hot(labels, dimension=46):
    results = np.zeros((len(labels), dimension))
    for i, label in enumerate(labels):
        results[i, label] = 1.
    return results

one_hot_train_labels = to_one_hot(train_labels) # 将训练标签向量化
one_hot_test_labels = to_one_hot(test_labels) # 将测试标签向量化
  • Keras内置方法可以实现这个操作。
from keras.utils.np_utils import to_categorical

one_hot_train_labels = to_categorical(train_labels)
one_hot_test_labels = to_categorical(test_labels)
3.5.3 构建网络
  • 对于前面用过的Dense层的堆叠,每层只能访问上一层输出的信息。如果某一层丢失了与分类相关的一些信息,那么这些信息无法被后面的层找回,也就是说,每一层都可能成为信息瓶颈。上一个例子使用了16维的中间层,但对这个例子来说16维空间可能太小了,无法学会区分46个不同的类别。这种维度较小的层可能成为信息的瓶颈,永久地丢失相关信息。出于这个原因,下面将使用维度更大的层,包含64个单元。
# 模型定义
from keras import models
from keras import layers

model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))
print(model.summary())
  • 网络的最后一层是大小为46的Dense层。这意味着,对于每个输入样本,网络都会输出一个46维向量。这个向量的每个元素(即每个维度)代表不同的输出类别。
  • 最后一层使用了softmax激活。网络将输出在46个不同输出类别上的概率分布-对于每一个输入样本,网络都会输出一个46维向量,其中 o u t p u t [ i ] output[i] output[i]是样本属于第 i i i个类别的概率。46个概率的总和为1。
  • 对于这个例子,最好的损失函数式categorical_crossentropy(分类交叉熵)。它用于衡量两个概率分布之间的距离,这里两个概率分布分别是网络输出的概率分布和标签的真是分布。通过将这两个分布的距离最小化,训练网络可使输出结果尽可能接近真实标签。
# 编译模型
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
3.5.4 验证你的方法
  • 我们在训练数据中留出1000个样本作为验证集
# 留出验证集
x_val = x_train[:1000]
partial_x_train = x_train[1000:]

y_val = one_hot_train_labels[:1000]
partial_y_train = one_hot_train_labels[1000:]

# 训练模型
history = model.fit(partial_x_train, partial_y_train, epochs=20, batch_size=512, validation_data=(x_val, y_val))

# 绘制训练损失和验证损失
import matplotlib.pyplot as plt

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(1, len(loss) + 1)

plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and Validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()

# 绘制训练精度和验证精度
plt.clf() # 清空图像

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()

plt.show()
# 从头开始重新训练一个模型
model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))

model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])

model.fit(x_train, one_hot_train_labels, epochs=9, batch_size=512)
results = model.evaluate(x_test, one_hot_test_labels)

print(results)
3.5.5 在新数据上生成预测结果
  • 模型实例的predict方法返回了在46个主题上的概率分布。
predictions = model.predict(x_test)
print(predictions[0].shape)
print(np.sum(predictions[0]))
print(np.argmax(predictions[0]))
3.5.6 处理标签和损失的另一种方法
  • 前面提到了另一种编码标签的方法,就是将其转换为整数张量。
y_train = np.array(train_labels)
y_test = np.array(test_labels)
  • 对于这种编码方法,唯一需要改变的是损失函数的选择。对于分类编码标签,使用categorical_crossentropy损失函数。对于整数标签,应该使用sparse_categorical_crossentropy。
model.compile(optimizer='rmsprop', loss='sparse_categorical_crossentropy', metrics=['acc'])
  • 这个新的损失函数在数学上与categorical_crossentropy完全相同,二者只是接口不同。
3.5.7 中间层维度足够大的重要性
  • 前面提到,最终输出是46维,因此中层的隐藏单元个数不应该比46小太多。
# 具有信息瓶颈的模型
model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(4, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))

model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])

model.fit(x_train, one_hot_train_labels, epochs=9, batch_size=512)
results = model.evaluate(x_test, one_hot_test_labels)
  • 预测精度下降了,导致这一下降的主要原因在于,模型试图将大量信息(这些信息足够恢复46个类别的分割超平面)压缩到维度很小的中间空间。网络能够将大部分必要信息塞入这个思维表示中,但并不是全部信息。
3.5.9 小结
  • 如果要对 N N N个类别的数据点进行分类,网络的最后一层应该是大小为 N N N的Dense层。
  • 对于单标签、多分类问题,网络的最后一层应该使用softmax激活,这样可以输出在 N N N个输出类别上的概率分布。
  • 这种问题的损失函数几乎总是应该使用分类交叉熵。它将网络输出的概率分布与目标的真实分布之间的距离最小化。
  • 处理多分类问题的标签有两种方法:通过分类编码(也叫one-hot编码)对标签进行编码,然后使用categorical_crossentropy作为损失函数。将标签编码为整数,然后使用sparse_categorical_crossentropy损失函数。
  • 如果你需要将数据划分到许多类别中,应该避免使用太小的中间层,以免在网络中造成信息瓶颈。
  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值