深度学习
呆萌的小透明
这个作者很懒,什么都没留下…
展开
-
Python深度学习(DeepDream)--学习笔记(十九)
8.2 DeepDreamDeepDream是一种艺术性的图像修改技术,原创 2020-11-18 12:53:31 · 497 阅读 · 0 评论 -
Python深度学习(使用 LSTM 生成文本)--学习笔记(十八)
第8章 生成式深度学习人工智能模拟人类思维过程的可能性,并不局限于被动性任务(比如目标识别)和大多数反应性任务(比如驾驶汽车),它还包括创造性活动。的确,到目前为止,我们见到的人工智能艺术作品的水平还很低。人工智能还远远比不上人类编剧、画家和作曲家。但是,替代人类始终都不是我们要谈论的主题,人工智能不会替代我们自己的智能,而是会为我们的生活和工作带来更多的智能,即另一种类型的智能。在许多领域,特别是创新领域中,人类将会使用人工智能作为增强自身能力的工具,实现比人工智能更加强大的智能。很大一部分的艺术原创 2020-11-17 18:32:35 · 835 阅读 · 0 评论 -
Python深度学习(让模型性能发挥到极致)--学习笔记(十七)
7.3 让模型性能发挥到极致原创 2020-11-17 18:32:17 · 329 阅读 · 1 评论 -
Python深度学习(使用 Keras 回调函数和 TensorBoard 来检查并监控深度学习模型)--学习笔记(十六)
7.2 使用 Keras 回调函数和 TensorBoard 来检查并监控深度学习模型使用model.fit()或model.fit_generator()在一个大型数据集上启动数十轮的训练,有点类似于扔一架飞机,一开始给它一点推力,之后你便再也无法控制其飞行轨迹或着陆点。如果想要避免不好的结果(并避免浪费纸飞机),更聪明的做法是不用纸飞机,而是用一架无人机,它可以感知其环境,将数据发挥给操作者,并且能够基于当前状态自主航行。7.2.1 训练过程中将回调函数作用于模型训练模型时,很多事情一开始都原创 2020-11-16 20:29:42 · 595 阅读 · 0 评论 -
Python深度学习(不用 Sequential 模型的解决方案:Keras 函数式 API)--学习笔记(十五)
第7章 高级的深度学习最佳实践7.1 不用Sequential模型的解决方案:Keras函数式API到目前为止,介绍的所有神经网络都是用Sequential模型实现的。Sequential模型假设,网络只有一个输入和一个输出,而且网络是层的线性堆叠。这是一个经过普遍验证的假设。这种网络配置非常常见,以至于前面只用Sequential模型类就能够涵盖许多主题和实际应用。但有些情况下这种假设过于死板。有些网络需要多个独立的输入,有些网络则需要多个输出,而有些网络在层与层之间具有内部分支,这使得网络看起来原创 2020-11-16 20:29:21 · 775 阅读 · 0 评论 -
Python深度学习(用卷积神经网络处理序列)--学习笔记(十四)
用卷积神经网络处理序列第5章我们学习了卷积神经网络(convnet),并知道它在计算机视觉问题上表现出色,原因在于它能够进行卷积运算,从局部输入图块中提取特征,并能够将表示模块化,同时可以高效地利用数据。这些性质让卷积神经网络在计算机视觉领域表现优异,同样也让它对序列处理特别有效。时间可以被看作一个空间维度,就像二维图形的高度或宽度。对于某些序列处理问题,这种一维卷积神经网络的效果可以媲美RNN,而且计算代价通常要小很多。最近,一维卷积神经网络(通常与空洞卷积核(dilated kernel)一起使用原创 2020-11-15 12:55:23 · 641 阅读 · 0 评论 -
Python深度学习(循环神经网络)--学习笔记(十三)
6.2 理解循环神经网络目前见过的所有神经网络(比如密集连接网络和卷积神经网络)都有一个特点,那就是它们都没有记忆。它们单独处理每个输入,在输入与输入之间没有保存任何状态。对于这样的网络,要想处理数据点的序列或时间序列,你需要向网络同时展示整个序列,即将序列转换成单个数据点。例如,在IMDB示例中就是这么做的:将全部电影评论转换为一个大向量,然后一次性处理。这种网络叫作前馈网络(feedforward network)。与此相反,当你在阅读这个句子时,你是一个词一个词地阅读(或者说,眼睛一次扫视一次扫原创 2020-11-15 12:55:01 · 815 阅读 · 0 评论 -
Python深度学习(处理文本数据)--学习笔记(十二)
第6章 深度学习用于文本和序列用于处理序列的两种基本的深度学习算法分别是循环神经网络(recurrent neural network)和一维卷积神经网络(1D convnet),这些算法的应用包括:(1)文档分类和时间序列分类,比如识别文字的主题或书的作者;(2)时间序列对比,比如估测两个文档或两支股票行情的相关程度;(3)序列到序列的学习,比如将英语翻译成法语;(4)情感分析,比如将推文或电影评论的情感划分为正面或负面;(5)时间序列预测,比如根据某地最近的天气数据来预测未来天气。6.1 处理文原创 2020-11-12 22:35:44 · 1212 阅读 · 0 评论 -
Python深度学习(使用预训练的卷积神经网络)--学习笔记(十一)
5.3 使用预训练的卷积神经网络想要将深度学习应用于小型图像数据集,一种常用且非常高效的方法是使用预训练网络。预训练网络(pretrained network)是一个保存好的网络,之前已经在大型数据集(通常是大规模图像分类任务)上训练好。如果这个原始数据集足够大且足够通用,那么预训练网络学到的特征的空间层次结构可以有效地作为视觉世界的通用模型,因此这些特征可用于各种不同的计算机视觉问题,即使这些新问题涉及的类别和原始任务完全不同。举个例子,你在ImageNet上训练了一个网络(其类别主要是动物和日常用品原创 2020-11-10 18:34:36 · 1545 阅读 · 0 评论 -
Python深度学习(在小型数据集上从头开始训练一个卷积神经网络)--学习笔记(十)
5.2 在小型数据集上从头开始训练一个卷积神经网络使用很少的数据来训练一个图像分类模型,这是很常见的情况,如你要从事计算机视觉方面的职业,很可能会在实践中遇到这种情况。“很少的”样本可能是几百张图像,也可能是几万张图像。5.2.1 深度学习与小数据问题的相关性有时你会听人说,仅在有大量数据可用时,深度学习才有效。这种说法部分正确:深度学习的一个基本特性就是能够独立地在训练数据中找到有趣的特征,无须认为的特征工程,而这只在拥有大量训练样本时才能实现。对于输入样本的维度非常高(比如图像)的问题尤其如原创 2020-11-10 18:34:14 · 1548 阅读 · 2 评论 -
Python深度学习(卷积神经网络简介)--学习笔记(九)
第5章 深度学习用于计算机视觉5.1 卷积神经网络简介# 实例化一个小型的卷积神经网络from keras import layersfrom keras import modelsmodel = models.Sequential()model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))model.add(layers.MaxPooling2D((2, 2)))model.add(原创 2020-11-09 18:33:12 · 497 阅读 · 0 评论 -
Python深度学习(机器学习基础)--学习笔记(八)
第4章 机器学习基础4.1 机器学习的四个分支在前面的例子中,你已经熟悉了三种类型的机器学习问题:二分类问题、多分类问题和标量回归问题。。这三者都是监督学习(supervised learning)的例子,其目标是学习训练输入与训练目标之间的关系。4.1.1 监督学习监督学习是目前最常见的机器学习类型。给定一组样本(通常由人工标注),它可以学会将输入数据映射到已知目标(也叫标注(annotation))。一般来说,近年来广受关注的深度学习应用几乎都属于监督学习,比如光学字符识别、语音识别、图像原创 2020-11-09 18:32:38 · 818 阅读 · 1 评论 -
Python深度学习(预测房价:回归问题)--学习笔记(七)
3.6 预测房价:回归问题前面两个例子都是分类问题,其目标是预测输入数据点所对应的单一离散的标签。另一种常见的机器学习问题是回归问题,它预测一个连续值而不是离散的标签,例如,根据气象数据预测明天的气温,或者根据软件说明书预测完成软件项目所需要的时间。3.6.1 波士顿房价数据集本节将要预测20世纪70年代中期波士顿房屋价格的中位数,已知当时郊区的一些数据点,比如犯罪率、当地房产税等。本节用到的数据集与前面两个例子有一个有趣的去吧。它包含的数据点相对较少,只有506个,分为404个训练样本和102原创 2020-11-05 18:32:36 · 1994 阅读 · 0 评论 -
Python深度学习(新闻分类:多分类问题)--学习笔记(六)
3.5 新闻分类:多分类问题本节会构建一个网络,将路透社新闻划分为46个互斥的主题。因为有多个类别,所以这是多分类(multiclass classification)问题的一个例子。因为每个数据点只能划分到一个类别,所以更具体地说,这是单标签、多分类(single-label, multiclass classification)问题的一个例子。如果每个数据点可以划分到多个类别(主题),那它就是一个多标签、多分类(multilabel, multiclass classification)问题。3原创 2020-11-04 20:27:00 · 808 阅读 · 0 评论 -
Python深度学习(电影评论分类:二分类问题)--学习笔记(五)
3.4 电影评论分类:二分类问题3.4.1 IMDB数据集本节使用IMDB数据集,它包含来自互联网电影数据库(IMDB)的50000条严重两极分化的评论。数据集被分为用于训练的25000条评论与用于测试的25000条评论,训练集和测试集都包含50%的正面评论和50%的负面评论。不应该将训练机器学习模型的同一批数据再用于测试模型!模型在训练数据上的表现很好,而你真正关系的是模型在新数据上的性能(因为你已经知道了训练数据对应的标签,显然不再需要模型来进行预测)。例如,你的模型最终可能只是记住了训练样本和原创 2020-11-04 19:25:26 · 954 阅读 · 0 评论 -
Python深度学习(神经网络入门)--学习笔记(四)
3.1 神经网络剖析训练神经网络主要围绕以下四个方面:层,多个层组合成网络(或模型);输入数据和相应的目标;损失函数,即用于学习的反馈信号;优化器,决定学习过程如何进行。多个层链接在一起组成了网络,将输入数据映射为预测值。然后损失函数将这些预测值与目标进行比较,得到损失值,用于衡量网络预测值与预期结果的匹配程度。优化器使用这个损失值来更新网络的权重。3.1.1 层:深度学习的基础组件层是一个数据处理模块,将一个或多个输入张量转换为一个或多个输出张量。有些层是无状态的,但大多数的层是有状态的,即原创 2020-11-03 19:36:59 · 334 阅读 · 0 评论 -
Python深度学习(神经网络的数学基础)----学习笔记(三)
第2章 神经网络的数学基础2.1 初识神经网络需要解决的问题:将手写数字的灰度图像(28像素x28像素)划分到10个类别中(0~9)。MNIST数据集包含60000张训练图像和10000张测试图像,由美国国家标准与技术研究院(National Institute of Standards and Technology)在20世纪80年代收集得到。MNIST数据集预先加载在Keras库中,其中包括4个Numpy数组。from keras.datasets import mnist# 加载ker原创 2020-10-29 18:53:21 · 822 阅读 · 0 评论 -
Python深度学习(深度学习之前:机器学习简史)----学习笔记(二)
1.2 深度学习之前:机器学习简史深度学习已经得到了人工智能历史上前所未有的公众关注度和产业投资,但这并不是机器学习的第一次成功。可以这样说,当前工业界所使用的绝大部分机器学习算法都不是深度学习算法。深度学习不一定总是解决问题的正确工具:有时没有足够的数据,深度学习不适用;有时用其他算法可以更好地解决问题。1.2.1 概率建模概率建模(probabilistic modeling) 是统计学原理在数学分析中的应用。它是最早的机器学习形式之一,至今仍在广泛使用。其中最有名的算法之一就是朴素贝叶斯算原创 2020-10-28 17:24:00 · 449 阅读 · 0 评论 -
Python深度学习(什么是深度学习)----学习笔记(一)
第1章 什么是深度学习1.1 人工智能、机器学习与深度学习1.1.1 人工智能人工智能诞生于20世纪50年代,当时计算机科学这一新兴领域的少数先驱开始醍醐疑问:计算机是否能够“思考”?人工智能的简洁定义如下:努力将通常由人类完成的智力任务自动化。人工智能是一个综合性的领域,不仅包括机器学习与深度学习,还包括更多不涉及学习的方法。例如,早期的国际象棋程序仅报刊程序员精心编写的硬编码规则,并不属于机器学习。在相当长的时间内,许多专家相信,只要程序员精心编写足够多的明确规则来处理知识,就可以实现与人类水平原创 2020-10-27 16:18:59 · 2348 阅读 · 0 评论