大数据之Hadoop(从Hadoop框架讨论大数据生态)

Hadoop是什么

  • (1)Hadoop是一个由Apache基金会所开发的分布式系统基础架构。
  • (2)主要解决,海量数据的存储和海量数据的分析计算问题。
  • (3)广义上来说,Hadoop通常是指一个更广泛的概念-Hadoop生态圈。

Hadoop发展历史

  • (1)Lucene框架是Doug Cutting开创的开源软件,用Java书写代码,实现与Google类似的全文搜索功能,它提供了全文检索引擎的架构,包括完整的查询引擎和索引引擎。
  • (2)2001年年底Lucene称为Apache基金会的一个子项目。
  • (3)对于海量数据的场景,Lucene面对与Google同样的困难,存数据困难,检索速度慢。
  • (4)学习和模仿Google解决这些问题的办法:微型版Nutch。
  • (5)可以说Google是Hadoop的思想之源(Google在大数据方面的三篇论文):GFS->HDFS、Map-Reduce->MR、BigTable->HBase。
  • (6)2003-2004年,Google公开了步幅GFS和MapReduce思想的细节,以此为基础Doug Cutting等人用了2年业余时间实现了DFS和MapReduce机制,使Nutch性能飙升。
  • (7)2005年Hadoop作为Lucene的子项目Nutch的一部分正式引入Apache基金会。
  • (8)2006年3月份,Map-Reduce和Nutch Distributed File System(NDFS)分别被纳入称为Hadoop的项目中。
  • (9)名字来源于Doug Cutting儿子的玩具大象。
  • (10)Hadoop就此诞生并迅速发展,大数据时代到来。

Hadoop三大发行版本

  • Apache、Cloudera、Hortonworks
  • Apache版本最原始(最基础)的版本,对于入门学习最好。
  • Cloudera在大型互联网企业中用的较多。(CDH)
  • Hortonworks文档较好。

Hadoop的优势(4高)

  • (1)高可靠性:Hadoop底层维护多个数据副本,所以即使Hadoop某个计算元素或存储出现故障,也不会导致数据的丢失。
  • (2)高扩展性:在集群间分配任务数据,可方便的扩展数以千计的节点。
  • (3)高效性:在MapReduce的思想下,Hadoop是并行工作的,以加快任务处理速度。
  • (4)高容错性:能够自动将失败的任务重新分配。

Hadoop组成

  • Hadoop 1.x组成:Common(辅助工具)、HDFS(数据存储)、MapReduce(计算+资源调度)。
  • Hadoop 2.x组成:Common(辅助工作)、HDFS(数据存储)、Yarn(资源调度)、MapReduce(计算)。
  • 在Hadoop1.x时代,MapReduce同时处理业务逻辑运算和资源的调度,耦合性较大,在Hadoop2.x时代,增加了YARN。YARN只负责资源的调度,MapReduce只负责运算。
  • HDFS架构概述:(1)NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、文件权限),以及每个文件的块列表和块所在的DataNode等。
  • DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和。
  • Secondary NameNode(2nn):用来监控HDFS状态的辅助后台程序,每隔一段时间获取HDFS元数据的快照。

YARN架构概述

  • ResourceManager、Node Manager、ApplicationMaster(集群上运行的任务,job)
  • ResourceManager:(1)处理客户端请求(client->Job Submission)(2)监控NodeManager(Node Status)(3)启动或监控AplicationMaster(4)资源的分配与调度
  • NodeManager:(1)管理单个节点上的资源(2)处理来自ResourceManager的命令(3)处理来自ApplicationMaster的命令。
  • ApplicationMaster(AM)作用如下:(1)负责数据的切分(2)为应用程序申请资源并分配给内部的任务(3)任务的监控与容错
  • Container:Container是YARN中的资源抽象,它封装了某个节点上的多维度资源,如内存、CPU、磁盘、网络等。
    在这里插入图片描述

MapReduce架构概述

  • MapReduce将计算过程分为两个阶段:Map和Reduce。
  • (1)Map阶段并行处理输入数据。
  • (2)Reduce阶段对Map结果进行汇总。

大数据技术生态体系

  • 数据来源层:数据库(结构化数据)、文件日志(半结构化数据)、视频、ppt等(非结构化数据)。
  • 数据传输层:Sqoop数据传递、Flume日志收集、Kfaka消息队列。
  • 数据存储层:HDFS文件存储、HBase非关系型数据库、Kfaka消息队列。
  • 资源管理层:YARN资源管理。
  • 数据计算层:MapReduce离线计算:Hive查询,Mahout数据挖掘、Spark Core内存计算:Spark Mlib数据挖掘,Spark R数据分析,Spark Sql数据查询,Spark Streaming(准实时,底层采用微批处理)、Storm实时计算。
  • 任务调度层:Oozie任务调度、Azkaban任务调度。
  • zookeeper:数据平台配置和调度。
  • 业务模型层:业务模型、数据可视化、业务应用。
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值