HDFS概述
1.1 HDFS产生背景及定义
1.1.1 HDFS产生背景
- 随着数据量越来越大,在一个操作系统存不下所有的数据,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,迫切需要一种系统来管理多台机器上的文件,这就是分布式文件管理系统。HDFS只是分布式文件管理系统中的一种。
1.1.2 HDFS定义
- HDFS(Hadoop Distributed File System),它是一个文件系统,用于存储文件,通过目录树来定位文件;其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色。
- HDFS的使用场景:适合一次写入,多次读出的场景,且不支持文件的修改。适合用来做数据分析,并不适合用来做网盘应用。
1.2 HDFS 优缺点
1.2.1 优点
(1)高容错性:(a)数据自动保存多个副本。它通过增加副本的形式,提高容错性。(b)某一个副本丢失以后,它可以自动回复。
(2)适合处理大数据:(a)数据规模:能够处理数据规模达到GB、TB、甚至PB级别的数据;(b)文件规模:能够处理百万规模以上的文件数量,数量相当之大。
(3)可构建在廉价机器上,通过多副本机制,提高可靠性。
1.2.2 缺点
(1)不适合低延时数据访问,比如毫秒级的存储数据,是做不到的。
(2)无法高效的对大量小文件进行存储:(a)存储大量小文件的话,它会占用NameNode大量的内存来存储文件目录和块信息。这样是不可取的,因为NameNode的内存总是有限的;(b)小文件存储的寻址时间会超过读取时间,它违反了HDFS的设计目标
(3)不支持并发写入、文件随机修改:(a)一个文件只能有一个写,不允许多个线程同时写;(b)仅支持数据append(追加),不支持文件的随机修改。
1.3 HDFS组成架构
1、NameNode(NN):就是Master,它是一个主管、管理者。
(1)管理HDFS的名称空间;
(2)配置副本策略;
(3)管理数据库(Block)映射信息;
(4)处理客户端读写请求。
2、DataNode:就是Slave。NameNode下达命令,DataNode执行实际的操作。
(1)存储实际的数据块;
(2)执行数据块的读/写操作。
3、Client:客户端
(1)文件切分。文件上传HDFS的时候,Client将文件切分成一个一个的Block,然后进行上传;
(2)与NameNode交互,获取文件的位置信息;
(3)与DataNode交互,读取或者写入数据;
(4)Client提供一些命令来管理HDFS,比如NameNode格式化;
(5)Client可以通过一些命令来访问HDFS,比如对HDFS增删查改操作;
4、Secondary NameNode:并非NameNode的热备。当NameNode挂掉的时候,它并不能马上替换NameNode并提供服务。
(1)辅助NameNode,分担其工作量,比如定期合并Fsimage和Edits,并推送给NameNode;
(2)在紧急情况下,可辅助恢复NameNode
1.4 HDFS文件块大小
- HDFS中的文件在物理上是分块存储(Block),块的大小可以通过配置参数(dfs.blocksize)来规定,默认大小在Hadoop2.x版本是128M,老版本中是64M。
- 如果寻址时间约为10ms,即查找到目标block的时间为10ms。
- 寻址时间为传输时间的1%时,则为最佳状态。因此,传输时间=10ms/0.01=1000ms=1s
- 而目前磁盘的传输速率普遍为100MB/s
- block大小=1s*100MB/s=100MB
- 为什么块的大小不能设置太小,也不能设置太大:(1)HDFS的块设置太小,会增加寻址时间,程序一直在找块的开始位置;(2)如果块设置的太大,从磁盘传输数据的时间会明显大于定位这个块开始位置所需的时间。导致程序在处理这块数据时,会非常慢。
- 总结:HDFS块的大小设置主要取决于磁盘传输速率。