- 博客(6)
- 资源 (2)
- 收藏
- 关注
原创 Opencv 实现 运动模糊的添加(motion blur)与消除(demotion blur)
此代码用于实现模糊运动的添加与消除。原理:在已知模糊运动核的前提下,可通过核线性卷积的形式对图像添加运动模糊, 反之也可利用该核精确的去除该运动模糊。说明:本例代码是在梳理前人代码的基础上整理得到,仅使用了C++常用库与opencv2.4.5 AddMotionBlur的createLinearFilter函数在opencv3+版本中已经去除,故而建议只用op...
2018-06-06 10:52:29 17983 3
原创 caffe模型优化流程解析
本文不考虑模型与数据集对模型训练的影响,即假设两个框架下的模型是一致的,且使用的是相同的数据集,关于模型的移植实现,有机会另开博文详述,本文在以上假设下,研讨caffe模型的优化流程,分析其中的函数调用关系,并据此,比对一种优化算法Adadelta在两种框架下的实现。
2017-07-25 23:09:17 1307
原创 【AlexNet】模型训练与测试导读
【AlexNet】模型训练与测试导读Label 深度学习 AlexNet训练与测试假设本机上已经配置好了caffe框架,且已了解AlexNet模型的架构,本篇旨在引导读者实现模型的训练与测试,训练集【ILSVRC2012】一.数据处理 ILSVRC2012数据下载:http://pan.baidu.com/s/1jHqYJw6 密码: ia4d;解压密码:367660588; 这份是ILSVRC
2016-08-22 14:01:27 5157
原创 机器学习—决策树(ID3,C4.5)算法解析
机器学习—决策树(ID3,C4.5)算法解析Label 机器学习 决策树 解析 决策树实现思路:假设有已知的数据集X【例如某些人的集合,数据内容包括用于描述他们的特征属性及特征属性值,如性别(男|女),年龄(整数),收入(较低|中等|较高)等】,以及数据集的分类标签Y【是否是某俱乐部的成员(是|否)】,对数据集做特征属性测试【在当前可选的特征属性中选取最佳分裂属性,其评判标准为特征属性的度量值,
2016-08-21 10:32:13 1515
原创 【AlexNet解读】ImageNet Classification withDeep Convolutional Neural Networks
【AlexNet解读】ImageNet Classification withDeep Convolutional Neural Networks Label 深度学习 模型解读 AlexNet 一.摘要数据库:ImageNet,开放的深度学习人工标记数据库,根据比赛ImageNet Large-Scale Visual Recognition Challenge (ILSV
2016-08-17 17:24:16 3116
原创 Windos 7 64位下通过VS2013配置caffe模型,并使用MATLAB调用训练好的ImgaeNet接口做测试
Windos 7 64位下通过VS2013配置caffe模型,并使用MATLAB调用训练好的ImgaeNet接口做测试 Label 深度学习 caffe配置 测试 一. Win 7 + VS2013 + caffe 1. 准备工作:安转VS2013 2. Windos下caffe的源码:https://github.com/happynear/caffe-wind
2016-08-08 13:56:12 2275 4
添加运动(motion blur)与去运动模糊( demotion blur)
2018-06-06
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人