camera的ZSL是什么

camera的ZSL是什么

ZSL:
Zero Shutter Lag. 零快门延迟
ubiFocus:
高通对照片后期的一种处理技术,可以利用多张照片来实现拍照不对焦,拍好之后随便选择对焦点的功能。
原文链接:https://blog.csdn.net/kris_fei/article/details/77057473
术语:
ZSL:
Zero Shutter Lag.
ubiFocus:
高通对照片后期的一种处理技术,可以利用多张照片来实现拍照不对焦,拍好之后随便选择对焦点的功能。

ZSL出现背景:
拍照的延时主要分两个方面:

  1. 从按下拍照键到照片拍好放到内存里。
  2. APK的后期处理。

对于BSP这边,能优化的主要是第一条,因此ZSL的出现正如其名Zero Shutter Lag一样,是为了减少拍照时间的。

拍照流程:
来对比下Normal snapshot和ZSL的工作框图。
Normal flow:

此模式下,只有preview通道在工作,当做snapshot的时候,preveiw停止,snapshot通道被创建,然后拍照,再编码为JPEG。 接着preview通道又被重新打开工作。

ZSL flow:

此模式下,preview和snapshot通道一起工作,当拍照的时候,直接从snapshot通道获取数据并编码为JPEG,省去了创建snapshot通道的过程。

Code调用流程:
Non-ZSL preview/snapshot:

Preview的时候

<think>好的,我需要回答用户关于零样本学习(ZSL)的定义介绍。首先,根据用户提供的引用资料,我需要整合这些信息,确保准确性相关性。 用户引用了三个来源:[^1]、[^2][^3]。其中,[^2]提到ZSL旨在在没有任何标注数据的情况下识别新类别,而则详细介绍了ZSL的概念、方法应用场景。我需要结合这些信息,给出一个清晰的定义。 首先,ZSL的核心定义是让模型在没有目标类别标注数据的情况下进行识别。这与传统监督学习不同,传统方法需要大量标注数据。ZSL通过属性、语义描述或知识图谱等辅助信息来传递知识,帮助模型理解新类别。[^2]都强调了这一点。 接下来,需要介绍ZSL的基本原理。根据,ZSL通常将样本映射到共享的语义空间,例如使用属性或词向量。例如,通过训练数据中的可见类别,模型学习将图像特征与语义属性关联,然后应用于不可见类别。 然后,应用场景部分,可以引用[^6]提到的图像分类、物体检测自然语言处理。此外,[^1]提到的SAM模型结合ZSL可能用于图像分割,这也是一个应用实例。 面临的挑战方面,[^3]提到语义鸿沟问题,即低层特征与高层语义的不匹配。同时,指出ZSL依赖辅助信息的质量,这也是需要注意的点。 需要确保使用正确的中文术语,避免技术术语错误。同时,按照用户要求,行内公式用$...$,独立公式用$$...$$。例如,提到嵌入函数时可以用$f: \mathcal{X} \to \mathcal{S}$。 最后,生成相关问题时要围绕ZSL的定义、原理、应用挑战展开,确保问题有针对性,帮助用户进一步学习。 检查引用标注是否自然,例如在提到应用场景时引用[^6],但用户提供的引用中没有[^6],可能需要调整。根据用户提供的引用,引用应限制在、、。因此需要修正引用,确保准确。 总结步骤: 1. 定义ZSL,引用。 2. 解释原理,包括语义空间映射。 3. 应用场景,引用。 4. 挑战,引用。 5. 生成相关问题,覆盖定义、方法、应用、挑战。 现在组织语言,确保结构清晰,符合用户要求的中文回答,并正确使用引用标注。</think>### 零样本学习(ZSL)的定义与介绍 **零样本学习(Zero-Shot Learning, ZSL)** 是一种机器学习范式,其核心目标是让模型能够识别或分类在训练阶段**从未见过标注数据的新类别**。这一方法通过利用类别之间的语义关联(如属性、文本描述、知识图谱等)来实现知识迁移,从而解决传统监督学习对大量标注数据的依赖问题。 #### 1. ZSL的核心思想 ZSL假设模型在训练时可以访问两类信息: - **可见类别(Seen Classes)**:带有标注数据的已知类别。 - **语义描述(Semantic Descriptions)**:所有类别(包括可见不可见)的辅助信息,例如: - 属性(如“有翅膀”“会飞”描述鸟类); - 词向量(Word Embedding); - 知识图谱中的关系。 模型通过学习可见类别的数据与语义描述之间的映射关系,泛化到**不可见类别(Unseen Classes)**的推理任务中。 #### 2. ZSL的形式化表示 假设输入空间为$\mathcal{X}$,语义空间为$\mathcal{S}$,类别标签集合为$\mathcal{Y} = \mathcal{Y}^s \cup \mathcal{Y}^u$($s$为可见,$u$为不可见)。ZSL的目标是学习一个映射函数: $$f: \mathcal{X} \to \mathcal{S} \to \mathcal{Y}^u$$ 即先将输入(如图像)映射到语义空间,再通过语义匹配预测不可见类别的标签。 #### 3. ZSL的典型应用场景 - **图像分类**:识别训练数据中未出现的新物种或物体。 - **自然语言处理**:处理未标注的词汇或领域[^3]。 - **跨模态任务**:例如结合文本描述生成图像(如DALL·E)。 #### 4. ZSL的挑战 - **语义鸿沟(Semantic Gap)**:低层特征(如像素)与高层语义(如属性)的匹配困难。 - **领域偏移(Domain Shift)**:可见类别不可见类别的特征分布差异导致泛化能力下降。 - **对辅助信息的强依赖**:语义描述的质量直接影响模型性能。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荣敢飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值