二维空间的欧式距离:

高维空间的欧式距离:

这个符号(两个竖线) 在没有特殊说明的情况下表示欧式距离。欧式距离衡量了两个向量在每个维度上的差距。计算的方式为: 将每个维度差的平方求和再相加后开方。
二维空间的欧式距离:
这个符号(两个竖线) 在没有特殊说明的情况下表示欧式距离。欧式距离衡量了两个向量在每个维度上的差距。计算的方式为: 将每个维度差的平方求和再相加后开方。
本文详细解释了二维及高维空间中欧式距离的概念与计算方法。欧式距离是衡量两个向量间差距的重要指标,通过将各维度差的平方求和并开方得出。了解欧式距离对于深入理解数据科学和机器学习中的相似性度量至关重要。
二维空间的欧式距离:

高维空间的欧式距离:

这个符号(两个竖线) 在没有特殊说明的情况下表示欧式距离。欧式距离衡量了两个向量在每个维度上的差距。计算的方式为: 将每个维度差的平方求和再相加后开方。
二维空间的欧式距离:
这个符号(两个竖线) 在没有特殊说明的情况下表示欧式距离。欧式距离衡量了两个向量在每个维度上的差距。计算的方式为: 将每个维度差的平方求和再相加后开方。
3万+
1241
3万+

被折叠的 条评论
为什么被折叠?