平方欧几里得距离(Squared Euclidean Distance) 和 L2 距离(欧几里得距离,Euclidean Distance)

平方欧几里得距离(Squared Euclidean Distance)L2 距离(欧几里得距离,Euclidean Distance) 的主要区别在于它们的计算公式、梯度特性以及在深度学习中的应用。


1. 公式对比

对于两个向量 ( A ) 和 ( B )(维度为 ( d )):

  • ( A = (a_1, a_2, …, a_d) )
  • ( B = (b_1, b_2, …, b_d) )

(1) L2 距离(欧几里得距离)

[
d_{L2}(A, B) = \sqrt{\sum_{i=1}^{d} (a_i - b_i)^2}
]

  • 直接计算向量之间的欧几里得距离,具有平方根

(2) 平方欧几里得距离(Squared Euclidean Distance)

[
d_{\text{squared}}(A, B) = \sum_{i=1}^{d} (a_i - b_i)^2
]

  • 计算的是欧几里得距离的平方没有平方根

2. 数学和梯度特性

距离类型 是否有平方根 数值范围 梯度特性
L2 距离 ( \sqrt{\sum (a_i - b_i)^2} ) ✅ 有平方根 更小(与差值成线性比例) 梯度在远处较小,近处较陡峭
平方欧几里得距离 ( \sum (a_i - b_i)^2 ) ❌ 无平方根 较大(与差值平方成正比) 梯度变化更均匀,远处梯度更大
  • L2 距离(含平方根):

    • 远距离时,梯度较小,更新步伐变慢(因为平方根的梯度衰减)。
    • 近距离时,梯度较大,收敛快。
  • 平方欧几里得距离

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值