数值计算方法雅可比迭代matlab迭代

本文介绍了一种使用迭代法求解线性方程组的MATLAB实现过程。通过构造矩阵A和向量b,利用Jacobi迭代法进行求解,直到满足预设的误差范围。此方法适用于大型稀疏矩阵的求解,是数值计算中常见的一种算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

clear;
A=[1,0.4,0.4;0.4,1,0.8;0.4,0.8,1];
b=[1;1;1];
[m,n]=size(A);
L=-tril(A);
U=-triu(A);
D=diag(diag(A));
B=eye(m,n)-D\A;
f=D\b;
e=1e-3;
x0=zeros(m,1);
x1=B*x0+f;
while(max(abs(x0-x1))>e)
    x0=x1;
    x1=B*x0+f;
end
disp(x0)
    
可比迭代法是一种用于求解非线性方程组的方法,它基于泰勒级展开。在MATLAB中,可以使用`fsolve`函来应用这种迭代,而如果需要编写自定义迭代器,可以手动构造可比矩阵。 以下是简单的可比迭代法的基本步骤和一个简化的MATLAB代码示例: 1. 定义目标函 `fun` 和它的克比矩阵 `J`(如果可以直接计算)。 2. 初始化猜测解 `x0`。 3. 迭代直到满足停止条件,例如绝对误差小于预设阈值或达到最大迭代。 ```Matlab function [x, iter] = jacobi_iterate(fun, x0, options) % fun: 非线性方程的目标函,输入x返回一个向量f(x) = 0 % x0: 初始猜测解 % options: 可选的迭代选项,如 'Display', 'MaxIter' if nargin < 3, options = []; end % 默认无显示 % 初始化迭代器和上一次解 iter = 0; prev_x = x0; while true % 计算当前迭代的函值 f(x) f = fun(prev_x); % 如果所有元素都接近零,认为找到解 if norm(f) < options.TolFun || iter >= options.MaxIter break; end % 手动构建可比矩阵(假设已知),如果没有则需要提供fun的导信息 J = jacobian(fun, prev_x); % 替换为实际的可比计算 % 计算下一步迭代 dx = -inv(J)*f; % 或者使用更复杂的逆可比修正算法 % 更新解决方案 x = prev_x + dx; % 显示进度(如果选项设置) if ~isempty(options.Display) && mod(iter, options.Display) == 0 disp(['Iteration ', num2str(iter), ': F = ', num2str(norm(f))]); end % 更新迭代 iter = iter + 1; end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值