详解Python的装饰器

Python中的装饰器是你进入Python大门的一道坎,不管你跨不跨过去它都在那里。 为什么需要装饰器 我们假设你的程序实现了say_hello()和say_goodbye()两个函数。 def say_hello(): print "hello!&quo...

2018-12-01 15:51:19

阅读数 25

评论数 0

python 可变参数

  定义函数时,有时候我们不确定调用的时候会传递多少个参数(不传参也可以)。此时,可用包裹(packing)位置参数(*args),或者包裹关键字参数(**kwargs),来进行参数传递,会显得非常方便。   1、包裹位置传递 def func(*args): .... # ...

2018-12-01 15:31:07

阅读数 40

评论数 0

机器学习中的标准化/归一化

数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间。在一些数据比较和评价中常用到。典型的有归一化法,还有比如极值法、标准差法。 归一化方法的主要有两种形式:一种是把数变为(0,1)之间的小数,一种是把有量纲表达式变为无量纲表达式。在数字信号处理中是简化计算的有...

2018-11-27 09:17:43

阅读数 41

评论数 0

离散型特征编码方式:one-hot与哑变量

在机器学习问题中,我们通过训练数据集学习得到的其实就是一组模型的参数,然后通过学习得到的参数确定模型的表示,最后用这个模型再去进行我们后续的预测分类等工作。在模型训练过程中,我们会对训练数据集进行抽象、抽取大量特征,这些特征中有离散型特征也有连续型特征。若此时你使用的模型是简单模型(如LR),那么...

2018-11-21 14:48:35

阅读数 135

评论数 0

Dummy Variable & One-Hot Encoding

之前处理类别型变量都没有做处理,甚至没想过做啥变换,我这个建模大概是假的吧。 Dummy Variable 虚拟变量的含义 虚拟变量又称虚设变量、名义变量或哑变量,用以反映质的属性的一个人工变量,是量化了的质变量,通常取值为0或1。引入哑变量可使线形回归模型变得更复杂,但对问题描述更简明,一个方...

2018-11-21 14:42:54

阅读数 92

评论数 0

【pandas】[3] DataFrame通过数据类型选择子数据框

DataFrame.select_dtypes(include=None, exclude=None) Return a subset of the DataFrame’s columns based on the column dtypes. Parameters: inclu...

2018-11-04 15:29:32

阅读数 482

评论数 0

python 中字典{ }的嵌套

在机器学习中会用字典的嵌套来存储决策树的信息,对绘制树形图有很大的作用,其中嵌套字典的生成是一个递归的过程  如下所示: >>> s={'a':{0:'no',1:{'flippers':{0: 'no', 1: 'maybe'...

2018-10-11 16:44:37

阅读数 84

评论数 0

评分卡模型中的IV和WOE详解

1.IV的用途     IV的全称是Information Value,中文意思是信息价值,或者信息量。 我们在用逻辑回归、决策树等模型方法构建分类模型时,经常需要对自变量进行筛选。比如我们有200个候选自变量,通常情况下,不会直接把200个变量直接放到模型中去进行拟合训练,而是会用一些方...

2018-09-28 20:16:33

阅读数 669

评论数 0

python 字典遍历

#一、遍历key test = {'aa': '1a', 'bb': '2b', 'cc': '3c'} for key in test:     print 'key is : ',key key is : aa key is : cc key is : bb for key in...

2018-09-09 20:33:34

阅读数 85

评论数 0

Jupyter使用的教程

如何本地运行本教程 安装Jupyter到本地,详见Jupyter Notebook 安装git后,执行git clone 到笔记本目录下,执行jupyter notebook 菜单栏 File Edit View Insert Cell Kernel Help File Ne...

2018-09-07 08:24:52

阅读数 1151

评论数 0

hbase命令梳理

以下命令基于hbase版本: hbase(main):041:0> version 1.2.0-cdh5.7.1, rUnknown, Wed Jun 1 16:30:06 PDT 2016   general status: 查看hbase状态 hbase(m...

2018-09-06 11:19:51

阅读数 73

评论数 0

【pandas】[2] 移动窗口rolling的理解

概念: ​​为了提升数据的准确性,将某个点的取值扩大到包含这个点的一段区间,用区间来进行判断,这个区间就是窗口。移动窗口就是窗口向一端滑行,默认是从右往左,每次滑行并不是区间整块的滑行,而是一个单位一个单位的滑行。给个例子好理解一点: import pandas as pd s = [1,2...

2018-09-02 21:00:22

阅读数 511

评论数 0

【pandas】[1] DataFrame 数据合并,连接(merge,join,concat)

merge  通过键拼接列 pandas提供了一个类似于关系数据库的连接(join)操作的方法<Strong>merage</Strong>,可以根据一个或多个键将不同DataFrame中的行连接起来 语法如...

2018-08-31 08:41:39

阅读数 65

评论数 0

回归预测评估指标

    回归预测评估指标 标注说明 ff表示预测值,yy表示实际值 评价指标 MAE(Mean Absolute Error) 平均绝对误差  MSE(Mean Square Error) 平均平方差/均方误差是回归任务最常用的性能度量。  RMSE(Root ...

2018-08-24 14:19:34

阅读数 72

评论数 0

利用随机森林对特征重要性进行评估

前言 随机森林是以决策树为基学习器的集成学习算法。随机森林非常简单,易于实现,计算开销也很小,更令人惊奇的是它在分类和回归上表现出了十分惊人的性能,因此,随机森林也被誉为“代表集成学习技术水平的方法”。  本文是对随机森林如何用在特征选择上做一个简单的介绍。 随机森林(RF)简介 只要了解决...

2018-08-24 09:30:53

阅读数 6521

评论数 0

python nonzero函数

先构建一个简单的矩阵: from numpy import * a = mat([[1,1,0],[1,1,0],[1,0,3]]) print(a) 输出结果如下图: print(a.nonzero())   第一个array表示非零元素所在的行,第...

2018-08-01 10:52:35

阅读数 129

评论数 0

矩阵的运算及其规则

一、矩阵的加法与减法   1、运算规则    设矩阵,,   则           简言之,两个矩阵相加减,即它们相同位置的元素相加减!   注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. ...

2018-07-30 09:10:48

阅读数 186

评论数 0

Java的位运算符详解实例——与(&)、非(~)、或(|)、异或(^)

位运算符主要针对二进制,它包括了:“与”、“非”、“或”、“异或”。从表面上看似乎有点像逻辑运算符,但逻辑运算符是针对两个关系运算符来进行逻辑运算,而位运算符主要针对两个二进制数的位进行逻辑运算。下面详细介绍每个位运算符。   1.与运算符 与运算符用符号“&”表示,...

2018-07-24 20:51:41

阅读数 31

评论数 0

回归预测评估指标

      回归预测评估指标 标注说明 ff表示预测值,yy表示实际值 评价指标 MAE(Mean Absolute Error) 平均绝对误差  MAE=1n∑i=1n|fi−yi|MAE=1n∑i=1n|fi−yi| MSE(Mean Square Error) 平均平方...

2018-07-21 11:57:37

阅读数 430

评论数 0

二分类模型评价指标-KS值

knitr::opts_chunk$set(echo = TRUE,eval=FALSE) 1 1. KS值 1.1 概念   KS值越大,表示模型能够将正、负客户区分开的程度越大。    通常来讲,KS>0.2即表示模型有较好的预测准确性。   柯尔莫哥洛夫-斯米...

2018-07-21 11:45:10

阅读数 1273

评论数 0

提示
确定要删除当前文章?
取消 删除