动态规划:摇摆子数组

版权声明: https://blog.csdn.net/xiezongsheng1990/article/details/79968214

    给定一个数组,求其最长摇摆子数组的长度。

    摇摆数组:数组的元素关系按照递增、递减、递增、递减...规律变化的数组,如[1,3,2,5,4]。

    数组的摇摆子数组:删除某些元素后,剩下的元素按照原来的顺序组成摇摆数组。如数组[1,17,5,10,13,15,10,5,16,8],删除部分元素后得到的其中一个最长摇摆子数组为[1,17,10,13,10,16,8],其长度为7。

    方法一:对每一个元素,找出把其当做较小的元素和较大的元素时,摇摆子数组的最长长度。这种方法需要两层遍历,时间复杂度为O(n^2)。

    public int wiggleMaxLength(int[] nums) {
        int[] l1 = new int[nums.length]; // as positive
        int[] l2 = new int[nums.length]; //as negative
        l1[0] = 1; l2[0] = 1;
        int maxLength = 1;
        for(int i = 1; i < nums.length; i++) {
	        	int max = 0;
        		for(int j = i - 1; j >= 0; j--) {
        			if(nums[j] < nums[i] && l2[j] > max) { //i is positive
        				max = l2[j];
        			}
        		}
    			l1[i] = Math.max(1, max + 1);
    			max = 0;
        		for(int j = i - 1; j >= 0; j--) {
        			if(nums[j] > nums[i] && l1[j] > max) { //i is positive
        				max = l1[j];
        			}
        		}
    			l2[i] = Math.max(1, max + 1);
        		maxLength = Math.max(maxLength,  Math.max(l1[i], l2[i]));
        }
        return maxLength;
    }

    方法二:对于每一个元素,如果下一步需要的是较小的元素,那么如果下一个元素比当前元素小,则考虑下一个元素,并开始寻找较大的元素;如果下一个元素比当前元素大,则把下一个元素替代当前元素(因为n[i+1] > n[i],寻找较小元素会比较容易)。该方法只需要一次遍历,时间复杂度为O(n)。

public int wiggleMaxLength(int[] nums) {
        if (nums.length == 0 || nums.length == 1) {
            return nums.length;
        }
        int k = 0;
        while (k < nums.length - 1 && nums[k] == nums[k + 1]) {  //Skips all the same numbers from series beginning eg 5, 5, 5, 1
            k++;
        }
        if (k == nums.length - 1) {
            return 1;
        }
        int result = 2;     // This will track the result of result array
        boolean smallReq = nums[k] < nums[k + 1];       //To check series starting pattern
        for (int i = k + 1; i < nums.length - 1; i++) {
            if (smallReq && nums[i + 1] < nums[i]) {
                nums[result] = nums[i + 1];
                result++;
                smallReq = !smallReq;    //Toggle the requirement from small to big number
            } else {
                if (!smallReq && nums[i + 1] > nums[i]) {
                    nums[result] = nums[i + 1];
                    result++;
                    smallReq = !smallReq;    //Toggle the requirement from big to small number
                }
            }
        }
        return result;
    }

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页