- 博客(2)
- 收藏
- 关注
原创 用于航空发动机故障诊断的深度分层排序网络
本文开发了一种高效的故障诊断框架FSHSM-PCNN,用于进行航空发动机故障诊断,该架构由一个新提出的基于故障影响力的分层排序模块(FSHSM)和并行卷积神经网络组成。其中,FSHSM用于对状态点数据按照其对故障诊断的影响力进行分层排序,以捕获不同时间点数据间的协同效应;并行卷积神经网络分别以原始样本和经过排序模块排序后的样本作为输入,获取数据的时序状态信息和协同信息,合并后的特征用于进行航空发动机故障的准确诊断。
2024-12-24 22:28:12
611
原创 【论文解读】基于通道注意力和时间注意力的时间卷积网络:用于航空发动机剩余使用寿命预测的双重注意力架构
本文介绍了一种用于航空发动机剩余使用寿命 (RUL) 预测的新框架,它以时间卷积网络 (TCN) 为主干网络,融入了通道注意力、时间注意力 (改良的Transformer)。其中TCN用来获取更高维的信号数据,并减少短期噪声对预测的影响;通道注意力用来获取不同维度信号 (经过TCN升维后的数据) 对RUL预测的重要性;时间注意力可以加强对具有显着退化信息的关键时间点的关注,从而更准确地进行航空发动机RUL预测。提示:以下是本篇文章正文内容,下面案例可供参考。
2024-02-23 12:03:23
2817
3
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人