【论文解读】基于通道注意力和时间注意力的时间卷积网络:用于航空发动机剩余使用寿命预测的双重注意力架构

本文提出了一种新型框架,利用时间卷积网络(TCN)结合通道注意力和改进的时间注意力机制,针对航空发动机的剩余使用寿命预测。通过解决数据不完整性、短期噪声问题和关键时间点忽视,该方法在C-MAPSS数据集上展示了显著的预测性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于通道注意力和时间注意力的时间卷积网络:用于航空发动机剩余使用寿命预测的双重注意力架构


标题: Channel attention & temporal attention based temporal convolutional network: A dual attention framework for remaining useful life prediction of the aircraft engines

期刊: Advanced Engineering Informatics (中科院1区top, JCR Q1, IF=8.8) 2024年1月发表

原文链接: https://doi.org/10.1016/j.aei.2024.102372

引用格式: Lin Lin, Jinlei Wu, Song Fu, Sihao Zhang, Changsheng Tong, Lizheng Zu, Channel attention & temporal attention based temporal convolutional network: A dual attention framework for remaining useful life prediction of the aircraft engines, Advanced Engineering Informatics, Volume 60, 2024, 102372, ISSN 1474-0346, https://doi.org/10.1016/j.aei.2024.102372.

前言

本文介绍了一种用于航空发动机剩余使用寿命 (RUL) 预测的新框架,它以时间卷积网络 (TCN) 为主干网络,融入了通道注意力、时间注意力 (改良的Transformer)。其中TCN用来获取更高维的信号数据,并减少短期噪声对预测的影响;通道注意力用来获取不同维度信号 (经过TCN升维后的数据) 对RUL预测的重要性;时间注意力可以加强对具有显着退化信息的关键时间点的关注,从而更准确地进行航空发动机RUL预测。
在这里插入图片描述

1. 论文解决的问题

  • 由于制造、装配等的限制,物理传感器安装位置有限,采集的数据并非是全面可表征航空发动机状态的数据。
  • 受到外
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值