基于通道注意力和时间注意力的时间卷积网络:用于航空发动机剩余使用寿命预测的双重注意力架构
文章目录
标题: Channel attention & temporal attention based temporal convolutional network: A dual attention framework for remaining useful life prediction of the aircraft engines
期刊: Advanced Engineering Informatics (中科院1区top, JCR Q1, IF=8.8) 2024年1月发表
原文链接: https://doi.org/10.1016/j.aei.2024.102372
引用格式: Lin Lin, Jinlei Wu, Song Fu, Sihao Zhang, Changsheng Tong, Lizheng Zu, Channel attention & temporal attention based temporal convolutional network: A dual attention framework for remaining useful life prediction of the aircraft engines, Advanced Engineering Informatics, Volume 60, 2024, 102372, ISSN 1474-0346, https://doi.org/10.1016/j.aei.2024.102372.
前言
本文介绍了一种用于航空发动机剩余使用寿命 (RUL) 预测的新框架,它以时间卷积网络 (TCN) 为主干网络,融入了通道注意力、时间注意力 (改良的Transformer)。其中TCN用来获取更高维的信号数据,并减少短期噪声对预测的影响;通道注意力用来获取不同维度信号 (经过TCN升维后的数据) 对RUL预测的重要性;时间注意力可以加强对具有显着退化信息的关键时间点的关注,从而更准确地进行航空发动机RUL预测。
1. 论文解决的问题
- 由于制造、装配等的限制,物理传感器安装位置有限,采集的数据并非是全面可表征航空发动机状态的数据。
- 受到外