keras
文章平均质量分 94
。
Nick Blog
这个作者很懒,什么都没留下…
展开
-
Keras学习笔记(1)——安装配置(Windows10,Pycharm)
最近在忙毕业设计,急需快速上手的深度学习框架,在尝试安装keras与mxnet的过程中走了不少弯路,在这里分享一下最后的成功经验,给各位提供些许参考。以下步骤或许有些是可以省略的,但是为了保险起见,建议都做。注:Windows10系统,使用Pycharm,原生裸机傻瓜型安装指南。1.Python与Pycharm安装官网下载即可,没有难度。需要注意的是认准自己的机器是64还是32,下载的时候注意...原创 2018-03-20 21:19:09 · 630 阅读 · 0 评论 -
语义分割损失函数总结
总结来说,交叉熵平等对待每个像素,加权交叉熵更关注少样本类别,focal loss更加关注难分样本,dice loss和iou loss更加关注TP,平等对待FN和FP,tversky loss除过TP外,更加倾向于关注FN1. 交叉熵(Cross Entorpy)图像分割中最常用的损失函数是逐像素交叉熵损失。该损失函数分别检查每个像素,将类预测(softmax or sigmoid)与目标向量(one hot)进行比较。1.1 理论指导二分类: 二分类最终模型采用sigmoid激活函数,最后一层仅原创 2020-12-15 21:07:44 · 9891 阅读 · 0 评论 -
keras进阶之poly学习率
Keras提供两种学习率调整方法,都是通过回调函数来实现。LearningRateSchedulerReduceLROnPlateau1. LearningRateSchedulerkeras.callbacks.LearningRateScheduler(schedule)学习速率定时器,也就是说,定的是啥就是啥,严格按照定时器进行更改。schedule: 一个函数,接受epoch作为输入(整数,从 0 开始迭代), 然后返回一个学习速率作为输出(浮点数)。import keras原创 2020-12-15 21:07:59 · 1005 阅读 · 0 评论 -
keras进阶之多gpu并行
1. 网上常见的有bug的代码from keras.utils import multi_gpu_modelimport osos.environ["CUDA_VISIBLE_DEVICES"] = "0, 1"model = vgg()parallel_model = multi_gpu_model(model, gpus=2)parallel_model.compile(loss='categorical_crossentropy', optimizer='adam')parallel_原创 2020-12-15 21:08:07 · 611 阅读 · 1 评论 -
keras进阶之自定义层
当你在复现别人的代码或者有个新奇的点子需要自定义一个网络层时,希望这篇博客可以帮助到你!主要有两种方法来自定义网络层:keras.core.lambda():简单实现,不包含可训练参数;编写Layer继承类:可实现复杂网络层,可自定义可训练参数;1. keras.core.lambda()如果只是对输入进行一些变换,并不包含可训练参数权重,可以自定义个函数,并用lanbda封装成keras支持的网络层。keras.layers.core.Lambda(function, output_sha原创 2020-12-15 21:08:46 · 1832 阅读 · 0 评论 -
mask_acc in keras (keras将未标记类别的精度不做评定)
import keras.backend as Kdef no_ground_accuracy(y_true, y_pred): y_true = K.argmax(y_true, axis=-1) y_pred = K.argmax(y_pred, axis=-1) mask = K.cast(K.not_equal(y_true, 15), K.floatx(...原创 2019-03-14 16:02:46 · 339 阅读 · 0 评论 -
Keras自定义IOU
def iou(y_true, y_pred, label: int): """ Return the Intersection over Union (IoU) for a given label. Args: y_true: the expected y values as a one-hot y_pred: the predicted...原创 2019-01-23 13:06:57 · 3267 阅读 · 18 评论 -
Keras自定义mIoU
def iou(y_true, y_pred, label: int): """ Return the Intersection over Union (IoU) for a given label. Args: y_true: the expected y values as a one-hot y_pred: the predicted ...原创 2020-03-20 22:04:22 · 1567 阅读 · 6 评论 -
keras之multi gpu parallel(多gpu并行)
1. 网上常见的有bug的代码from keras.utils import multi_gpu_modelimport osos.environ["CUDA_VISIBLE_DEVICES"] = "0, 1"model = vgg()parallel_model = multi_gpu_model(model, gpus=2)parallel_model.compile(loss...原创 2020-03-20 22:02:29 · 1455 阅读 · 1 评论 -
keras之学习率调整(内含论文中常见的poly衰减策略)
Keras提供两种学习率调整方法,都是通过回调函数来实现。LearningRateSchedulerReduceLROnPlateau1. LearningRateSchedulerkeras.callbacks.LearningRateScheduler(schedule)学习速率定时器,也就是说,定的是啥就是啥,严格按照定时器进行更改。schedule: 一个函数,接受ep...原创 2020-03-20 22:01:23 · 3994 阅读 · 0 评论 -
keras自定义层
当你在复现别人的代码或者有个新奇的点子需要自定义一个网络层时,希望这篇博客可以帮助到你!主要有两种方法来自定义网络层:keras.core.lambda():简单实现,不包含可训练参数;编写Layer继承类:可实现复杂网络层,可自定义可训练参数;1. keras.core.lambda()如果只是对输入进行一些变换,并不包含可训练参数权重,可以自定义个函数,并用lanbda封装成ke...原创 2020-03-20 21:59:37 · 1038 阅读 · 0 评论 -
【Keras】从两个实际任务掌握图像分类
我们一般用深度学习做图片分类的入门教材都是MNIST或者CIFAR-10,因为数据都是别人准备好的,有的甚至是一个函数就把所有数据都load进来了,所以跑起来都很简单,但是跑完了,好像自己还没掌握图片分类的完整流程,因为他们没有经历数据处理的阶段,所以谈不上走过一遍深度学习的分类实现过程。今天我想给大家分享两个比较贴近实际的分类项目,从数据分析和处理说起,以Keras为工具,彻底掌握图像分类任务。...转载 2018-03-20 19:31:20 · 1793 阅读 · 3 评论 -
keras ModelCheckpoint & tensorboard
转载:https://www.cnblogs.com/eniac1946/p/8473391.html8.更科学地模型训练与模型保存filepath = 'model-ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5'checkpoint = ModelCheckpoint(filepath, monitor='val_los...转载 2019-02-21 15:13:40 · 622 阅读 · 0 评论 -
keras-contrib
pip install git+https://www.github.com/keras-team/keras-contrib.git原创 2019-02-25 17:07:16 · 3430 阅读 · 4 评论 -
评估Keras深度学习模型的性能
Keras是Python中一个的强大而易用的库,主要用于深度学习。在设计和配置你的深度学习模型时,需要做很多决策。大多数决定必须通过反复试错的方法来解决,并在真实的数据上进行评估。因此,有一个可靠的方法来评估神经网络和深度学习模型的性能至关重要。在这篇文章中,你将学到使用Keras评估模型性能的几种方法。让我们开始吧。经验法评估网络配置在设计和配置你的深度学习模型时,你...翻译 2019-02-21 15:19:39 · 1407 阅读 · 0 评论 -
keras 读取hdf5模型时报错
转载:https://github.com/h5py/h5py/issues/757OSError: Unable to open file (file signature not found)`File signature not found`表明该文件已损坏或不是HDF5格式。请注意,所有操作都由原始HDF5库处理,其中h5py只是一个包装器。尝试使用HDF5实用程序检查文件`h5d...翻译 2019-02-21 15:06:43 · 1136 阅读 · 0 评论 -
keras 指定显卡
import osos.environ["CUDA_VISIBLE_DEVICES"] = "2"转载:https://blog.csdn.net/A632189007/article/details/77978058转载 2019-01-23 13:03:50 · 803 阅读 · 0 评论 -
查看keras版本
pythonimport kerasprint(keras.__version__)转载:https://blog.csdn.net/pursuit_zhangyu/article/details/85309329转载 2019-01-23 13:02:14 · 9165 阅读 · 0 评论 -
用keras 实现cifar10
用keras 实现cifar10以下是代码 1 # -*- coding: utf-8 -*- 2 __author__ = 'Administrator' 3 4 5 from keras.datasets import cifar10 6 from keras.utils import np_utils 7 from keras.models import Seq...原创 2018-04-13 17:11:26 · 2715 阅读 · 0 评论 -
UserWarning: Update your `Model` call to the Keras 2 API:
我的警告信息为:HARRISON_data.py:114: UserWarning: Update your `Model` call to the Keras 2 API: `Model(outputs=Tensor("lo..., inputs=[<tf.Tenso...)` output=loss)我的源代码为 model = Model( input=[pos...转载 2018-04-12 10:19:48 · 6144 阅读 · 0 评论 -
数据增强——Keras Image Data Augmentation 各参数详解
图像深度学习任务中,面对小数据集,我们往往需要利用Image Data Augmentation图像增广技术来扩充我们的数据集,而keras的内置ImageDataGenerator很好地帮我们实现图像增广。但是面对ImageDataGenerator中众多的参数,每个参数所得到的效果分别是怎样的呢?本文针对Keras中ImageDataGenerator的各项参数数值的效果进行了详细解释,为各位...转载 2018-04-11 14:14:51 · 25675 阅读 · 12 评论 -
ValueError: Error when checking : expected input_1 to have 4 dimensions, but got array with shape (2
The input shape you have defined is the shape of a single sample. The model itself expects some array of samples as input (even if its an array of length 1).Your output really should be 4-d, with the ...原创 2018-03-20 21:14:16 · 10232 阅读 · 0 评论 -
InvalidArgumentError: Inputs to operation loss/Classification_loss/logistic_loss/Select of type Sele
Epoch 1/10013097/13097 [==============================] - 5262s 402ms/step - loss: 2.8854 - acc: 0.8722 - iou: 0.2555 - val_loss: 5.3026 - val_acc: 0.9111 - val_iou: 0.2434Epoch 00001: saving mode...原创 2019-08-01 09:45:29 · 1304 阅读 · 0 评论 -
Keras实现卷积神经网络
在安装过Tensorflow后,在在安装Keras默认将TF作为后端,Keras实现卷积网络的代码十分简洁,而且keras中的callback类提供对模型训练过程中变量的检测方法,能够根据检测变量的情况及时的调整模型的学习效率和一些参数.下面的例子,MNIST数据作为测试import pandas as pdimport numpy as npimport matplotlib.pyplot...转载 2018-04-19 16:42:54 · 1343 阅读 · 0 评论