Pytorch笔记——3、Pytorch实现线性回归


在了解了线性回归的背景知识之后,现在我们可以动手实现它了。尽管强大的深度学习框架可以减少大量重复性工作,但若过于依赖它提供的便利,会导致我们很难深入理解深度学习是如何工作的。因此,本节将介绍如何只利用 Tensorautograd来实现一个线性回归的训练。

import torch
from matplotlib import pyplot as plt
import numpy as np
import random

生成数据集

n_samples, n_features = 1000, 2
true_w, true_b = [2, -3.4], 4.2

train_features = torch.tensor(np.random.normal(0, 1, (n_samples, n_features)), dtype=torch.float)
train_labels = true_w[0] * train_features[:, 0] + true_w[1] * train_features[:, 1] + true_b

Pytorch读取数据

import torch.utils.data as Data

batch_size = 10

# 将训练数据的特征和标签组合起来
dataset = Data.TensorDataset(train_features, train_labels)

# 随机读取小批量数据
data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)

打印第一个小批量数据样本:

for X, y in data_iter:
    print(X)
		print(y)
		break
tensor([[-1.5092, -1.8423],
        [-1.8254, -1.2151],
        [-0.9875, -0.2694],
        [ 0.8320,  2.4324],
        [-0.7053,  0.7679],
        [-1.0079,  0.6050],
        [ 0.7001,  0.5371],
        [ 1.2323, -0.3061],
        [-0.9670, -1.1892],
        [ 2.2475,  0.9057]])
tensor([ 7.4456,  4.6806,  3.1410, -2.4062,  0.1785,  0.1271,  3.7740,  7.7054,
         6.3095,  5.6158])

定义模型

Pytorch提供了大量预定义的层,我们只需关注使用哪些层来构造模型即可。

首先,导入torch.nn模块。实际上,“nn”是neural networks(神经网络)的缩写。顾名思义,该模块定义了大量神经网络的层。之前我们已经用过了autograd,而nn就是利用autograd来定义模型。nn的核心数据结构是Module,它是一个抽象概念,既可以表示神经网络中的某个层(layer),也可以表示一个包含很多层的神经网络。在实际使用中,最常见的做法是继承nn.Module,撰写自己的网络/层。一个nn.Module实例应该包含一些层以及返回输出的前向传播(forward)方法。

下面先来看看如何用nn.Module实现一个线性回归模型:

class LinearNet(nn.Module):
    def __init__(self, n_features):
        super().__init__()
        self.linear = nn.Linear(n_features, 1)

    def forward(self, x):
        return self.linear(x)

net = LinearNet(n_features)
print(net)
LinearNet(
  (linear): Linear(in_features=2, out_features=1, bias=True)
)

我们也可以用 nn.Sequential来更加方便的搭建网络, Sequential 是一个有序的容器,网络层将按照在传入 Sequential 的顺序依次被添加到计算图中

# 写法一
net1 = nn.Sequential(
    nn.Linear(n_features, 1)
)
print(net1)

# 写法二
net2 = nn.Sequential()
net2.add_module('linear', nn.Linear(n_features, 1))
print(net2)

# 写法三
from collections import OrderedDict
order_dict = OrderedDict([
    ('linear', nn.Linear(n_features, 1))
])
net3 = nn.Sequential(order_dict)
print(net3)
Sequential(
  (0): Linear(in_features=2, out_features=1, bias=True)
)
Sequential(
  (linear): Linear(in_features=2, out_features=1, bias=True)
)
Sequential(
  (linear): Linear(in_features=2, out_features=1, bias=True)
)

可以通过 net.parameters() 来查看模型所有的可学习参数,此函数将返回一个生成器:

for param in net.parameters():
    print(param)
Parameter containing:
tensor([[-0.2759,  0.6097]], requires_grad=True)
Parameter containing:
tensor([-0.5925], requires_grad=True)

作为一个单层神经网络,线性回归输出层中的神经元和输入层中各个输入完全连接,因此,线性回归的输出层又叫全连接层

注意: torch.nn 仅支持输入一个batch的样本,不支持单个样本输入,如果只有单个样本,可以使用 input.unsqueeze(0) 来添加一维

初始化模型参数

在使用net前,我们需要初始化模型参数,如线性回归模型中的权重和偏差。PyTorch在init模块中提供了多种参数初始化方法。这里的initinitializer的缩写形式。我们通过init.normal_将权重参数每个元素初始化为随机采样于均值为0、标准差为0.01的正态分布。偏差会初始化为零

from torch.nn import init

init.normal_(net[0].weight, mean=0, std=0.01)
init.constant_(net[0].bias, val=0)  # 也可以直接修改bias的data: net[0].bias.data.fill_(0)

定义损失函数

PyTorch在nn模块中提供了各种损失函数,这些损失函数可看作是一种特殊的层,PyTorch也将这些损失函数实现为nn.Module的子类。我们现在使用它提供的均方误差损失作为模型的损失函数。

loss = nn.MSELoss()

定义优化算法

torch.optim模块提供了很多常用的优化算法比如SGD、Adam和RMSProp等。下面我们创建一个用于优化net所有参数的优化器实例,并指定学习率为0.03的小批量随机梯度下降(SGD)为优化算法。

import torch.optim as optim

optimizer = optim.SGD(net.parameters(), lr=0.03)
optimizer
SGD (
Parameter Group 0
    dampening: 0
    lr: 0.03
    momentum: 0
    nesterov: False
    weight_decay: 0
)

我们还可以为不同子网络设置不同的学习率,这在finetune时经常用到。例:

optimizer2 = optim.SGD([
    # 如果对某个参数不指定学习率,就使用最外层的默认学习率
    {
        'params': net.subnet1.parameters()
    },
    {
        'params': net.subnet2.parameters(),
        'lr': 0.01
    }
 
], lr=0.03)

有时候我们不想让学习率固定成一个常数,那如何调整学习率呢?主要有两种做法。一种是修改optimizer.param_groups中对应的学习率,另一种是更简单也是较为推荐的做法——新建优化器,由于optimizer十分轻量级,构建开销很小,故而可以构建新的optimizer。但是后者对于使用动量的优化器(如Adam),会丢失动量等状态信息,可能会造成损失函数的收敛出现震荡等情况。

# 调整学习率为之前的0.1倍
for param_group in optimizer.param_groups:
    param_group['lr'] *= 0.1

训练模型

我们通过调用optim实例的step函数来迭代模型参数。按照小批量随机梯度下降的定义,我们在step函数中指明批量大小,从而对批量中样本梯度求平均。

num_epochs = 3
for epoch in range(1, num_epochs + 1):
    for X, y in data_iter:
        output = net(X)
        l = loss(output, y.view(-1, 1))
        # 梯度清零,等价于net.zero_grad()
        optimizer.zero_grad()
        l.backward()
        optimizer.step()
    print('epoch %d, loss: %f' % (epoch, l.item()))
epoch 1, loss: 10.941267
epoch 2, loss: 2.379056
epoch 3, loss: 0.683022

下面我们分别比较学到的模型参数和真实的模型参数。我们从net获得需要的层,并访问其权重(weight)和偏差(bias)。学到的参数和真实的参数很接近。

dense = net[0]
print(dense.weight)
print(dense.bias)
Parameter containing:
tensor([[ 1.6598, -2.7395]], requires_grad=True)
Parameter containing:
tensor([3.4061], requires_grad=True)

小结

  • torch.utils.data模块提供了有关数据处理的工具
  • torch.nn模块定义了大量神经网络的层
  • torch.nn.init模块定义了各种初始化方法
  • torch.optim模块提供了很多常用的优化算法
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值