本章在离散数学 这门课程是一个重点,考试分数在所有题目占比约13%, 很重要。
首先看知识结构图
要学习本章, 必须先了解 有关的概念。
一 谓词的概念
谓词用来指明个体的性质或个体之间的关系等, 常用大写的英文字母P, Q, R... 来表示。
表示具体性质或关系的谓词称为谓词常项, 表示抽象的或泛指的性质或关系的谓词称为谓词变项。
谓词变项的定义: 由一个谓词、一些个体变量组成的表达式称为谓词变项 或命题函数。
二 量词与合式公式
命题函数中表示数量的词称为量词,可以使用量词来表示个体常项与变项之间的数量关系, 即对命题函数进行量化。 量词分为两种, 一是全称量词, 二是存在量词。
在数学语句中, 经常用断定某一性质对变量在某一特定域内的所有值为真, 这一特定域即是论域。
注意一下有关概念
注意一个规律:
∀ᵪ 后面一定是 →
∃ᵪ 后面一定是 ∧
~~~~~~~
∀ 读作 “任何的”
∃ 读作 “存在着”
注意: 谓词合式公式没有 ⇔、⇒ 符号
三 谓词演算的等价式与蕴涵式
在谓词公式中常包含命题变元和个体变元, 当个体变元用确定的个体取代, 命题变元用确定的命题所取代时, 就称作 对谓词公式赋值(或解释)。
四 前束范式
定义: 一个公式,如果量词均在全式的开头, 它们的作用域, 延伸到整个公式的末尾, 则该公式称为前束范式。
量词就是:∀, ∃
例如 是前束范式,
不是前束范式。
五 谓词演算的推理理论
谓词演算的推理方法, 可以看做是命题演算推理方法的扩展。
本文介绍一些关于消去和添加量词的规则:
(1)全称量词消去规则(简记为 ∀ -)
(2) 全称量词引入规则 (简记为 ∀ +)
(3)存在量词消去规则 (简记为 ∃- )
(4)存在量词引入规则(简记为 ∃+)
看一个例题
题: 证明前提 "在本离散数学课上的每个人学过一门计算机课程" 和 "李明是本课上的学生" 可得出结论“李明学过一门计算机课程”。
解: 设D(x): x在本离散数学课上; C(x): x学过一门计算机课程; m: 李明。
则前提可表示为: , 结论是C(m).
构造推理证明如下:
(1) P规则
(2)
(3)
(4) T(2)(3)