一元函数积分学之3__绝对值函数的定积分的解法

博客详细探讨了如何解决绝对值函数的定积分问题,强调了根据积分区域判断正负并划分区间的重要性。通过两个例题说明了在不同区间内对绝对值函数进行积分的方法,总结出求解此类问题的关键在于正确划分和计算各段积分的和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于绝对值函数的定积分,解法要区分对待,|  |里面的值>0和 <0,分两种情况分析.

看一个例题:

106f1c74e1014523bac12161ec5cc086.png

 分析:  如何区分情况来分析呢? 我们知道当  x > 0 时,  |x| = x;  当 x<0 时,

|x| = -x.  如何判断>0 还是<0,  根据积分区域来判断!

在本题,当 0 ≤ x < 1 时,  |x| = x,   

               当 -1< x<0  时,    |x|=-x.

d6dbf9b18c124d539a01d445771a2ab8.jpeg

再看一个例题

aa2cece3ff824b7583fb4ebe076268de.jpeg

 

 

 

总结: 绝对值函数的定积分的求解, 就是划分区间,再计算各段之和。

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值