文章目录
第三章 一元函数积分概念、计算及应用
一、一元函数积分的概念、性质与基本定理
(一)原函数与不定积分的概念和基本性质
- 原函数与不定积分的定义
- 原函数与不定积分的关系
注意常数C
- 求不定积分与求微分(导数)的关系——互为逆运算
注意常数C
- 不定积分的简单性质,(提
k
(k≠0
),加减)
(二)定积分的概念与基本性质
-
定积分的定义
① 积分区间有限,被积函数有限
② 构造积分和时,小区间的分割是任意
③ 定积分存在时,其值只与被积函数与积分区间有关,与积分变量的字母无关 -
定积分的几何意义(注意正负)
-
函数在区间上的可积性
① 函数在闭区间有界
② 以下三条满足其一:
- 闭区间连续
- 闭区间只有有限个间断点
- 闭区间单调
- 定积分的基本性质
① 线性性质(加减)
② 对区间的可加性质(中间点可在区间内,也可在区间外)
③ 改变有限个点的函数值不改变其可积性与积分值
④ 比较定理,区间内函数小积分就小
推论 1:区间内恒大于等于0函数,积分值大于等于0
推论 2:积分的绝对值小于等于绝对值的积分
推论 3:估值定理: m < = f ( x ) < = M m<=f(x)<=M m<=f(x)<=M且不为常值函数
m ( b − a ) < ∫ a b f ( x ) d x < M ( b − a ) m(b-a)<\int_{a}^{b}f(x)dx<M(b-a) m(b−