算法复杂度

目录

算法复杂度简介

时间复杂度

时间复杂度简介

渐进符号

Θ 渐进紧确界符号

O渐进上界符号 

Ω渐进下界符号

时间复杂度计算 

常数  

线性O(n)

平方O(n*n) 

阶乘O(n!)

对数O(log n)

常见时间复杂度关系 

最佳、最坏、平均时间复杂度 

空间复杂度计算 

常数 O(1)

线性O(n)

常见空间复杂度关系 

算法复杂度总结 


算法复杂度简介

算法复杂度(Algorithm complexity):在问题的输入规模为 nn 的条件下,程序的时间使用情况和空间使用情况。

「算法分析」的目的在于改进算法。正如上文中所提到的那样:算法所追求的就是 所需运行时间更少(时间复杂度更低)占用内存空间更小(空间复杂度更低)。所以进行「算法分析」,就是从运行时间情况、空间使用情况两方面对算法进行分析。

比较两个算法的优劣通常有两种方法:

  • 事后统计:将两个算法各编写一个可执行程序,交给计算机执行,记录下各自的运行时间和占用存储空间的实际大小,从中挑选出最好的算法。
  • 预先估算:在算法设计出来之后,根据算法中包含的步骤,估算出算法的运行时间和占用空间。比较两个算法的估算值,从中挑选出最好的算法。

大多数情况下,我们会选择第 2 种方式。因为第 1 种方式的工作量实在太大,得不偿失。另外,即便是同一个算法,用不同的语言实现,在不同的计算机上运行,所需要的运行时间都不尽相同。所以我们一般采用预先估算的方法来衡量算法的好坏。

采用预先估算的方式下,编译语言、计算机运行速度都不是我们所考虑的对象。我们只关心随着问题规模 n 扩大时,时间开销、空间开销的增长情况。

这里的 「问题规模 n」 指的是:算法问题输入的数据量大小。对于不同的算法,定义也不相同。

  • 排序算法中:n 表示需要排序的元素数量。
  • 查找算法中:n 表示查找范围内的元素总数:比如数组大小、二维矩阵大小、字符串长度、二叉树节点数、图的节点数、图的边界点等。
  • 二进制计算相关算法中:nn 表示二进制的展开宽度。

一般来说,问题的输入规模越接近,相应的计算成本也越接近。而随着问题输入规模的扩大,计算成本也呈上升趋势。

接下来,我们将具体讲解「时间复杂度」和「空间复杂度」。

时间复杂度

时间复杂度简介

时间复杂度(Time Complexity):在问题的输入规模为 n 的条件下,算法运行所需要花费的时间,可以记作为 T(n)。

我们将 基本操作次数 作为时间复杂度的度量标准。换句话说,时间复杂度跟算法中基本操作次数的数量正相关。

  • 基本操作 :算法执行中的每一条语句。每一次基本操作都可在常数时间内完成。

基本操作是一个运行时间不依赖于操作数的操作。

比如两个整数相加的操作,如果两个数的规模不大,运行时间不依赖于整数的位数,则相加操作就可以看做是基本操作。

反之,如果两个数的规模很大,相加操作依赖于两个数的位数,则两个数的相加操作不是一个基本操作,而每一位数的相加操作才是一个基本操作。

下面通过一个具体例子来说明一下如何计算时间复杂度。

def algorithm(n):
    fact = 1
    for i in range(1, n + 1):
        fact *= i
    return fact

把上述算法中所有语句的执行次数加起来 1+n+n+1=2×n+2,可以用一个函数 f(n) 来表达语句的执行次数:f(n)=2×n+2。 

则时间复杂度的函数可以表示为:T(n)=O(f(n))。它表示的是随着问题规模 n 的增大,算法执行时间的增长趋势跟 f(n)相同。O 是一种渐进符号,T(n) 称作算法的 渐进时间复杂度(Asymptotic Time Complexity),简称为 时间复杂度

所谓「算法执行时间的增长趋势」是一个模糊的概念,通常我们要借助像上边公式中 O 这样的「渐进符号」来表示时间复杂度。

渐进符号

渐进符号(Asymptotic Symbol):专门用来刻画函数的增长速度的。简单来说,渐进符号只保留了 最高阶幂,忽略了一个函数中增长较慢的部分,比如 低阶幂系数常量。因为当问题规模变的很大时,这几部分并不能左右增长趋势,所以可以忽略掉。

经常用到的渐进符号有三种: Θ 渐进紧确界符号、O 渐进上界符号、Ω 渐进下界符号。接下来我们将依次讲解。

Θ 渐进紧确界符号

Θ 渐进紧确界符号:对于函数 f(n) 和 g(n),f(n)=Θ(g(n))。存在正常量 c1​、c2​ 和 n0​,使得对于所有 n≥n0 时,有 0≤c1⋅g(n)≤f(n)≤c2⋅g(n)。

也就是说,如果函数 f(n)=Θ(g(n)),那么我们能找到两个正数 c1​、c2​,使得 f(n)被 c1⋅g(n)和 c2⋅g(n)夹在中间。

例如:T(n)=3n2+4n+5=Θ(n2),可以找到 c1=1,c2=12,n0=1,使得对于所有 n≥1,都有 n2≤3n2+4n+5≤12n2。

O渐进上界符号 

O 渐进上界符号:对于函数 f(n)f和 g(n),f(n)=O(g(n))。存在常量 c,n0​,使得当 n>n0​ 时,有 0≤f(n)≤c⋅g(n)。

Θ 符号渐进地给出了一个函数的上界和下界,如果我们只知道一个函数的上界,可以使用 OO 渐进上界符号。 

Ω渐进下界符号

Ω 渐进下界符号:对于函数 f(n) 和 g(n),f(n)=Ω(g(n))。存在常量 c,n0​,使得当 n>n0 时,有 0≤c⋅g(n)≤f(n)。

同样,如果我们只知道函数的下界,可以使用 ΩΩ 渐进下界符号。 

                                                Θ、O 和 Ω 记号对比

时间复杂度计算 

渐进符号可以渐进地描述一个函数的上界、下界,同时也可以描述算法执行时间的增长趋势。

在计算时间复杂度的时候,我们经常使用 O 渐进上界符号。因为我们关注的通常是算法用时的上界,而不用关心其用时的下界。

那么具体应该如何计算时间复杂度呢?

求解时间复杂度一般分为以下几个步骤:

  • 找出算法中的基本操作(基本语句):算法中执行次数最多的语句就是基本语句,通常是最内层循环的循环体部分。
  • 计算基本语句执行次数的数量级:只需要计算基本语句执行次数的数量级,即保证函数中的最高次幂正确即可。像最高次幂的系数和低次幂可以忽略。
  • 用大 O 表示法表示时间复杂度:将上一步中计算的数量级放入 O 渐进上界符号中。

同时,在求解时间复杂度还要注意一些原则:

  • 加法原则:总的时间复杂度等于量级最大的基本语句的时间复杂度。

  • 乘法原则:循环嵌套代码的复杂度等于嵌套内外基本语句的时间复杂度乘积。

下面通过实例来说明如何计算时间复杂度。

常数  

一般情况下,只要算法中不存在循环语句、递归语句,其时间复杂度都为 O(1)。

O(1) 只是常数阶时间复杂度的一种表示方式,并不是指只执行了一行代码。只要代码的执行时间不随着问题规模 n 的增大而增长,这样的算法时间复杂度都记为 O(1)。

def algorithm(n):
    a = 1
    b = 2
    res = a * b + n
    return res

上述代码虽然有 44 行代码,但时间复杂度也是 O(1),而不是 O(3)。 

线性O(n)

一般含有非嵌套循环,且单层循环下的语句执行次数为 n 的算法涉及线性时间复杂度。这类算法随着问题规模 n 的增大,对应计算次数呈线性增长。

def algorithm(n):
    sum = 0
    for i in range(n):
        sum += 1
    return sum

上述代码中 sum += 1 的执行次数为 n 次,所以这段代码的时间复杂度为 O(n)。

平方O(n*n) 

一般含有双层嵌套,且每层循环下的语句执行次数为 n 的算法涉及平方时间复杂度。这类算法随着问题规模 n 的增大,对应计算次数呈平方关系增长。

def algorithm(n):
    res = 0
    for i in range(n):
        for j in range(n):
            res += 1
    return res

上述代码中,res += 1 在两重循环中,根据时间复杂度的乘法原理,这段代码的执行次数为 n*n 次,所以其时间复杂度为 O(n*n)。 

阶乘O(n!)

阶乘时间复杂度一般出现在与「全排列」、「旅行商问题暴力解法」相关的算法中。这类算法随着问题规模 n 的增大,对应计算次数呈阶乘关系增长。

def permutations(arr, start, end):
    if start == end:
        print(arr)
        return
 
    for i in range(start, end):
        arr[i], arr[start] = arr[start], arr[i]
        permutations(arr, start + 1, end)
        arr[i], arr[start] = arr[start], arr[i]

 

对数O(log n)

对数时间复杂度一般出现在「二分查找」、「分治」这种一分为二的算法中。这类算法随着问题规模 nn 的增大,对应的计算次数呈对数关系增长。

def algorithm(n):
    cnt = 1
    while cnt < n:
        cnt *= 2
    return cnt

 线性对数O(n*log n)

线性对数一般出现在排序算法中,例如「快速排序」、「归并排序」、「堆排序」等。这类算法随着问题规模 nn 的增大,对应的计算次数呈线性对数关系增长。

def algorithm(n):
    cnt = 1
    res = 0
    while cnt < n:
        cnt *= 2
        for i in range(n):
            res += 1
    return res

常见时间复杂度关系 

最佳、最坏、平均时间复杂度 

时间复杂度是一个关于输入问题规模 nn 的函数。但是因为输入问题的内容不同,习惯将「时间复杂度」分为「最佳」、「最坏」、「平均」三种情况。这三种情况的具体含义如下:

  • 最佳时间复杂度:每个输入规模下用时最短的输入所对应的时间复杂度。
  • 最坏时间复杂度:每个输入规模下用时最长的输入所对应的时间复杂度。
  • 平均时间复杂度:每个输入规模下所有可能的输入所对应的平均用时复杂度(随机输入下期望用时的复杂度)。

我们通过一个例子来分析下最佳、最坏、最差时间复杂度。

def find(nums, val):
    pos = -1
    for i in range(n):
        if nums[i] == val:
            pos = i
            break
    return pos

 

这段代码要实现的功能是:从一个整数数组 nums 中查找值为 val 的变量出现的位置。如果不考虑 break 语句,根据「2.3 时间复杂度计算」中讲的分析步骤,这个算法的时间复杂度是 O(n),其中 n 代表数组的长度。

但是如果考虑 break 语句,那么就需要考虑输入的内容了。如果数组中第 11 个元素值就是 val,那么剩下 n−1 个数据都不要遍历了,那么时间复杂度就是 O(1),即最佳时间复杂度为 O(1)。如果数组中不存在值为 val 的变量,那么就需要把整个数组遍历一遍,时间复杂度就变成了 O(n),即最差时间复杂度为 O(n)。

这样下来,时间复杂度就不唯一了。怎么办?

我们都知道,最佳时间复杂度和最坏时间复杂度都是极端条件下的时间复杂度,发生的概率其实很小。为了能更好的表示正常情况下的复杂度,所以我们一般采用平均时间复杂度作为时间复杂度的计算方式。

还是刚才的例子,在数组 numsnums 中查找变量值为 valval 的位置,总共有 n+1 种情况:「在数组的的 0∼n−1个位置上」和「不在数组中」。

我们将所有情况下,需要执行的语句次数累加起来,再除

通常只有同一个算法在输入内容不同,不同时间复杂度有量级的差距时,我们才会通过三种时间复杂度表示法来区分。一般情况下,使用其中一种就可以满足需求了。

空间复杂度计算 

常数 O(1)
def algorithm(n):
    a = 1
    b = 2
    res = a * b + n
    return res

上述代码中使用 a、b、res 这 33 个局部变量,其所占空间大小为常数阶,并不会随着问题规模 nn 的在增大而增大,所以该算法的空间复杂度为 O(1)。 

线性O(n)
def algorithm(n):
    if n <= 0:
        return 1
    return n * algorithm(n - 1)

 

常见空间复杂度关系 

算法复杂度总结 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赔罪

你的鼓励将是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值