Machine Learning
星殇丶
一位成长中的IT小白,期待和大家共同进步!!!
展开
-
python3机器学习经典算法与应用之判断机器学习算法的性能(一)
python机器学习算法应用性能判断性能判断我们使用训练集数据进行训练得到机器学习模型,但是模型对于新数据的标签的预测准确度是我们十分关心的。计算模型的损失用来衡量一个模型的性能好坏。训练集数据的分离,将原本的训练数据分为训练集和验证集两部分,但其实还应该再分为测试集一部分。将原本根据训练数据得到的机器模型应用于测试集数据来计算测试损失,从而来估计损失。首先介绍一下numpy.random...原创 2019-11-18 20:12:28 · 391 阅读 · 0 评论 -
python3机器学习经典算法与应用之scikit-learn中的机器学习算法封装
python机器学习算法应用标题标题原创 2019-11-18 19:10:30 · 429 阅读 · 1 评论 -
python3机器学习经典算法与应用之K近邻算法
python机器学习算法应用k近邻算法k近邻算法优点:算法思想简单、应用数学知识少、可以解释机器学习算法使用过程中的很多细节问题、更完整地刻画机器学习应用的流程。很适合入门。思想:已经知道的数据点分布在数据空间中。如何判断新加入的数据点的类别呢?首先选定一个k值(根据经验取得),在空间中寻找所有的点中距离新加入的数据点最近的k个点,以这k个数据点其自己的label进行投票(也就是说权衡这几...原创 2019-11-13 19:05:30 · 511 阅读 · 0 评论 -
python3机器学习经典算法与应用之读取数据和简单的数据探索
python机器学习算法应用初见sklearn初见sklearnsklearn中的datasets是sklearn封装好的一些数据集,可以用来练手。其中iris是鸢尾花的数据集。sklearn封装的数据集是一种特殊的数据结构,可以粗略理解为字典。调用keys()方法可以查看数据集的键分别代表数据、数据的标签、标签名、数据集的文档说明、特征名、文件名。查看文档可以调用DESCR属性查看。通...原创 2019-11-12 23:14:54 · 358 阅读 · 0 评论 -
python3机器学习经典算法与应用之matplotlib
python机器学习算法应用matplotlibmatplotlibmatplotlib是用于图形可视化的库。事实简单的绘图处理,我们需要的只是matplotlib中的pyplot子模块。首先我们先导入库,通常我们将matplotlib简化为mpl,其子模块pyplot简化为plt。然后创建一个0~10,等距划分100个点的数组。计算这个数组中每一个元素的sin值,只需要使用numpy....原创 2019-11-12 22:40:39 · 307 阅读 · 0 评论 -
python3机器学习经典算法与应用之Numpy.array——Fancy Indexing、Compare
python机器学习算法应用Fancy Indexing(花式索引)numpy.array比较Fancy Indexing和Compare结合Fancy Indexing(花式索引)正常使用索引方式可以随机访问任意一个元素,也可以使用切片的形式访问一段数据元素,或者一段数据元素中满足步长要求的数据。如何访问没有规律的数据呢?比如想访问索引为3,5,8的数据?将索引组织成一个列表的形式,再...原创 2019-11-12 14:14:50 · 339 阅读 · 0 评论 -
python3机器学习经典算法与应用之Numpy.array索引
python机器学习算法应用索引排序和使用索引索引上一节我们知道使用numpy.min()函数可以获得一个array中的最小值。通过numpy.argmin()可以获得最小值的索引。使用numpy.max()函数可以获得一个array中的最大值。通过numpy.argmax()可以获得最大值的索引。排序和使用索引创建一个0~15的array,使用numpy.random.shuffl...原创 2019-11-11 21:57:56 · 547 阅读 · 0 评论 -
python3机器学习经典算法与应用之Numpy.array聚合运算
python机器学习算法应用聚合操作聚合操作聚合操作者:将一组值变成一个值。最经典的聚合就是求和操作。首先创建一个随机向量,然后使用sum()函数和np.sum()函数做加和运算。sum()函数和np.sum()函数最大的区别就在于效率。很明显可以看出来,np.sum()函数的运行速度更快。求矩阵最小元素的方法:np.min()求矩阵最大元素的方法:np.max()另外一种方法...原创 2019-11-11 18:42:12 · 425 阅读 · 1 评论 -
python3机器学习经典算法与应用之Numpy.array运算
python机器学习算法应用矩阵数乘Universial Functions矩阵运算矩阵转置向量和矩阵的运算矩阵数乘如果自己去写for循环创建数乘之后的列表,效率很低,花费的时间代价很大。可以使用numpy.array()来创建数乘结果矩阵。注:绝对不可以使用直接使用一个数去直接乘一个普通的列表的情况,这样只是将列表的元素复制了n次。Universial Functions若是使用n...原创 2019-11-11 18:10:40 · 727 阅读 · 0 评论 -
python3机器学习经典算法与应用之Numpy.array基本操作(二)
python机器学习算法应用合并操作numpy.concatenate()分隔操作numpy.split()合并操作numpy.concatenate()使用numpy.concatenate()函数可以将矩阵进行拼接,将拼接的矩阵(或数组)组织成一个列表作为参数传递给concatenate()函数。下面是一位矩阵的合并操作:下面是二维矩阵的合并操作(默认沿着第一维度进行拼接)当合...原创 2019-11-10 20:08:05 · 344 阅读 · 0 评论 -
python3机器学习经典算法与应用之Numpy.array基本操作(一)
python机器学习算法应用Numpy.array的基本操作基本属性numpy.array数据访问1.方括号[]+索引的方式2.切片reshape()方法Numpy.array的基本操作首先创建一个一位数组x,再创建一位数组X,通过reshape()方法调整数组的维度。基本属性属性ndim用于查看数组的维度。属性shape也可以同样用来表示维度,但是返回值为元组,表示各个维度的长度。...原创 2019-11-10 16:36:15 · 432 阅读 · 0 评论 -
python3机器学习经典算法与应用之numpy
python机器学习算法应用原创 2019-11-10 15:37:22 · 451 阅读 · 0 评论 -
google机器学习速成教程学习笔记
Machine Learning notes监督式机器学习线性回归、训练和损失迭代方式降低损失降低损失 (Reducing Loss):梯度下降法使用TensorFlow泛化训练集和测试集验证集表示特征工程将原始数据映射到特征良好特征的特点清理数据缩放特征值处理极端离群值分箱清查特征组合特征组合的种类组合独热矢量简化正则化lambda逻辑回归计算概率逻辑回归的损失函数逻辑回归中的正则化分类阈值...原创 2019-11-03 09:53:59 · 859 阅读 · 0 评论