5-FITC Biotin |cas:134759-22-1|5-FITC-生物素

5-FITC-生物素,也被称为5-荧光素-生物素,是一种结合了荧光素异硫氰酸酯(FITC)和生物素(Biotin)的化合物,具有广泛的应用价值。以下是对该化合物的详细解析:

一、基本信息

  • 产品名称:5-FITC-生物素
  • 英文名称:5-FITC Biotin 或 Fluorescein Biotin
  • CAS号:134759-22-1
  • 分子式:C42H50N6O8S2
  • 分子量:831.02(或831.01,不同来源给出的数值可能略有差异)
  • 外观:橙黄色固体
  • 熔点:>164°C(分解)

结构式:

二、物理性质

  • 溶解性:溶于大部分有机溶剂,如DMSO(二甲基亚砜)、DCM(二氯甲烷)等,也溶于水。
  • 稳定性:在适当的存储条件下,具有较高的稳定性。

三、存储条件

  • 存储于-20℃,阴凉、干燥、通风良好的库房,避光保存。
  • 取用时一定要保持干燥,避免频繁解冻和冷冻。

四、功能与应用

  1. 荧光标记
    • FITC部分作为荧光染料,发射绿色荧光,具有高荧光量子产率和高光稳定性,适合用于荧光显微镜和流式细胞术等技术。
    • 荧光或吸光度可通过与抗生物素蛋白(avidin)或链霉亲和素(streptavidin)结合而淬灭。
  2. 生物素功能
    • 生物素部分与链霉亲和素或抗生物素蛋白具有强烈结合能力,用于分子捕获和检测。
    • 含有异硫氰酸酯基团,可以与生物分子中的胺基共价结合,实现荧光标记。
  3. 应用领域
    • 可用于活细胞和固定细胞的荧光标记,通过荧光显微镜观察细胞结构和功能。
    • 标记蛋白质分子,用于研究蛋白质的定位、相互作用和动态变化。
    • 作为荧光探针,提高检测灵敏度和特异性。

五、注意事项

  • 该化合物主要用于科研目的,不能用于人体或其他非科研用途。
  • 在使用过程中,应严格遵守实验室安全规范,避免与皮肤、眼睛等直接接触。

相关:

Hyaluronate-Biotin,透明质酸-生物素
Diphyllin-Biotin,二叶草素-生物素
loratadine-Biotin 氯雷他定-生物素
生物素-白桦脂醇,Biotin-Betulin
Hederagenin-Biotin,Biotin-常春藤皂苷元
青蒿琥酯-生物素,Artesunate-Biotin

OpenCV可以通过色彩空间转换函数和图像分割函数来实现光谱拆分应用示例-FITC检测。 首先,将彩色图像转换为HSV色彩空间,HSV色彩空间的H通道可以表示颜色的色相,S通道可以表示颜色的饱和度,V通道可以表示颜色的亮度。然后,根据需要对图像进行阈值分割,得到二值图像。最后,根据二值图像提取感兴趣区域并进行处理。 下面是一个简单的示例代码,用于检测FITC标记的细胞: ```python import cv2 # 读取彩色图像 image = cv2.imread('cell.jpg') # 将彩色图像转换为HSV色彩空间 hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) # 设置阈值,提取FITC标记的细胞 low_green = (50, 50, 50) high_green = (70, 255, 255) mask = cv2.inRange(hsv, low_green, high_green) # 对二值图像进行形态学操作,去除噪点 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) # 提取感兴趣区域 contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # 绘制感兴趣区域 for contour in contours: cv2.drawContours(image, [contour], 0, (0, 255, 0), 2) # 显示结果 cv2.imshow('FITC Detection', image) cv2.waitKey(0) cv2.destroyAllWindows() ``` 在上述代码中,`cv2.cvtColor`函数用于将彩色图像转换为HSV色彩空间,`cv2.inRange`函数用于根据阈值提取FITC标记的细胞,`cv2.morphologyEx`函数用于对二值图像进行形态学操作,去除噪点,`cv2.findContours`函数用于提取感兴趣区域,并使用`cv2.drawContours`函数绘制感兴趣区域。最后使用`cv2.imshow`函数显示结果。 注意,在使用`cv2.findContours`函数时,需要根据OpenCV的版本进行调整。在OpenCV 3.x版本中,`cv2.findContours`函数返回两个值,而在OpenCV 4.x版本中,`cv2.findContours`函数只返回一个值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值