本文来源于量化小论坛策略分享会板块精华帖,作者为童之心三代目,发布于2025年1月1日。
以下为精华帖正文:
01
前言
邢大发了K线相似度的研究,很感兴趣,想做些相关的探索。
探索问题:
1、相似度能否实现曲线的定制化筛选;
2、不同相似度计算方法的区别。
02
曲线定制化筛选
我们截取**trb start_time = '2024-01-15 08:00:00' end_time = '2024-01-17 07:00:00' **这一段k线作为基准,这段k线是比较典型的波动收敛后突破拉升的形态,是包括动量等多种策略都喜欢的形态。如果我们想从因子角度刻画这种形态,那需要实现两个关键点:如何描述前段的波动收敛,以及后续的拉升。不考虑窗口长度,需要至少两个因子来刻画,那从因子相似度如何实现?
截取这一段close 数据,计算历史合约中的相似度(余弦相似度),分析结果。
关注具有一定样本比例的高相似度的分组的收益。从相似度结果来看,高相似度比例占比较少,且未来6小时后的平均涨幅较高, 表明相似的K线形态可能有多头的超额收益。有搞头!!!
打印相似度最高的10段曲线,可以发现筛选出的K线形态同基准K线很相近,基本实现了筛选目的。
03
不同相似度计算方法的影响
除了余弦相似度,还测试了dtw、euclidean、pearson 三种方法。
1、dtw
2、euclidean
3、pearson
测试相似度最高的40段K线的重合度,以余弦相似度为基准,发现不同方法筛选出来的K线重合度比较高,研究时可以先弱化相似度计算方法的差别。
04
思路发散
比起纯粹因子刻画更灵活,以前需要多个因子多种规则设计筛选的K线,现在只要找到K线模板即可筛选;
可以因子化作为选币或过滤因子应用;
可以观察历史收益/亏损较高的K线形态,用相似度方法精准筛选;
形态对收益预估的有效性是否受大盘走势的影响。
附件为4种相似度处理脚本,数据源为彩虹预处理数据,只要修改数据源路径,即可得到相似度数据。后续研究可以基于该数据自行设计。
需要数据资料的话可以评论区留言,都是可以免费发你的。