精华贴分享|K线相似度研究(一)

本文来源于量化小论坛策略分享会板块精华帖作者童之心三代目,发布于2025年1月1日。

以下为精华帖正文:

01

前言

邢大发了K线相似度的研究,很感兴趣,想做些相关的探索。

探索问题:

1、相似度能否实现曲线的定制化筛选;

2、不同相似度计算方法的区别。

02

曲线定制化筛选

图片

我们截取**trb start_time = '2024-01-15 08:00:00' end_time = '2024-01-17 07:00:00' **这一段k线作为基准,这段k线是比较典型的波动收敛后突破拉升的形态,是包括动量等多种策略都喜欢的形态。如果我们想从因子角度刻画这种形态,那需要实现两个关键点:如何描述前段的波动收敛,以及后续的拉升。不考虑窗口长度,需要至少两个因子来刻画,那从因子相似度如何实现?

截取这一段close 数据,计算历史合约中的相似度(余弦相似度),分析结果。

图片

关注具有一定样本比例的高相似度的分组的收益。从相似度结果来看,高相似度比例占比较少,且未来6小时后的平均涨幅较高, 表明相似的K线形态可能有多头的超额收益。有搞头!!!

图片

打印相似度最高的10段曲线,可以发现筛选出的K线形态同基准K线很相近,基本实现了筛选目的。

03

不同相似度计算方法的影响

除了余弦相似度,还测试了dtw、euclidean、pearson 三种方法。

图片

1、dtw

图片

2、euclidean

图片

3、pearson

图片

测试相似度最高的40段K线的重合度,以余弦相似度为基准,发现不同方法筛选出来的K线重合度比较高,研究时可以先弱化相似度计算方法的差别。

图片

04

思路发散

比起纯粹因子刻画更灵活,以前需要多个因子多种规则设计筛选的K线,现在只要找到K线模板即可筛选;

可以因子化作为选币或过滤因子应用;

可以观察历史收益/亏损较高的K线形态,用相似度方法精准筛选;

形态对收益预估的有效性是否受大盘走势的影响。

附件为4种相似度处理脚本,数据源为彩虹预处理数据,只要修改数据源路径,即可得到相似度数据。后续研究可以基于该数据自行设计。

图片

需要数据资料的话可以评论区留言,都是可以免费发你的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值