动态规划算法基础及C语言实例
1. 动态规划概述
动态规划(Dynamic Programming, DP)是一种将复杂问题分解为更简单子问题的算法设计思想,通常用于解决具有重叠子问题和最优子结构性质的问题。动态规划通过存储子问题的解(即记忆化)避免了重复计算,显著提高了计算效率。
重叠子问题是指在问题求解过程中,某些子问题会被多次计算。而最优子结构意味着问题的最优解可以由其子问题的最优解构成。
2. 动态规划的基本步骤
动态规划通常遵循以下几个步骤:
-
确定状态和定义状态表示
- 找到问题的子问题,并定义一个状态表示,例如
dp[i]
表示前i
个元素的解。
- 找到问题的子问题,并定义一个状态表示,例如
-
状态转移方程
- 找出问题与子问题之间的递推关系。也就是如何通过已知的子问题解得到原问题的解。
-
边界条件(初始条件)
- 定义最小子问题的解,通常是问题最初状态的值。
-
计算顺序
- 确定计算子问题的顺序,一般从最小的子问题开始逐步求解较大的问题。
-
返回最终结果
- 根据问题的需求,返回最终的解。
3. 动态规划经典问题及C语言实例
示例1:斐波那契数列
问题描述:
计算斐波那契数列的第n
个数,斐波那契数列定义为:
F(0) = 0
,F(1) = 1
F(n) = F(n-1) + F(n-2)
(对于n >= 2
)
解题思路:
通过动态规划,利用一个数组来存储中间结果,避免重复计算。
#include <stdio.h>
int fibonacci(int n) {
if (n == 0) return 0;
if (n == 1) return 1;
int dp[n + 1];
dp[0] = 0;
dp[1] = 1;
for (int i = 2; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
int main() {
int n = 10;
printf("Fibonacci(%d) = %d\n", n, fibonacci(n));
return 0;
}
示例2:0-1 背包问题
问题描述:
有一个容量为W
的背包,和n
个物品,每个物品的重量为wi
,价值为vi
。求如何选择物品使得在不超过背包容量的情况下,背包中的物品价值最大。
解题思路:
定义dp[i][w]
表示前i
个物品在容量为w
时的最大价值。状态转移方程为:
- 如果不选择第
i
个物品:dp[i][w] = dp[i-1][w]
- 如果选择第
i
个物品:dp[i][w] = max(dp[i-1][w], dp[i-1][w-wi] + vi)
#include <stdio.h>
#define MAX_ITEMS 100
#define MAX_WEIGHT 1000
int knapsack(int n, int W, int weights[], int values[]) {
int dp[MAX_ITEMS + 1][MAX_WEIGHT + 1] = {0};
for (int i = 1; i <= n; i++) {
for (int w = 0; w <= W; w++) {
if (weights[i - 1] <= w) {
dp[i][w] = (dp[i - 1][w] > (dp[i - 1][w - weights[i - 1]] + values[i - 1]))
? dp[i - 1][w]
: (dp[i - 1][w - weights[i - 1]] + values[i - 1]);
} else {
dp[i][w] = dp[i - 1][w];
}
}
}
return dp[n][W];
}
int main() {
int n = 4; // 物品数量
int W = 8; // 背包容量
int weights[] = {2, 3, 4, 5};
int values[] = {3, 4, 5, 6};
printf("Maximum value in Knapsack = %d\n", knapsack(n, W, weights, values));
return 0;
}
示例3:最长上升子序列
问题描述:
给定一个整数数组,求该数组的最长严格递增子序列的长度。例如,数组[10, 9, 2, 5, 3, 7, 101, 18]
的最长上升子序列是[2, 3, 7, 101]
,长度为4。
解题思路:
定义dp[i]
为以第i
个元素为结尾的最长上升子序列长度。对于每个元素,检查前面的元素是否小于当前元素,并更新状态。
#include <stdio.h>
int lengthOfLIS(int arr[], int n) {
if (n == 0) return 0;
int dp[n];
for (int i = 0; i < n; i++) dp[i] = 1;
int maxLIS = 1;
for (int i = 1; i < n; i++) {
for (int j = 0; j < i; j++) {
if (arr[i] > arr[j]) {
dp[i] = (dp[i] > dp[j] + 1) ? dp[i] : (dp[j] + 1);
}
}
if (dp[i] > maxLIS) {
maxLIS = dp[i];
}
}
return maxLIS;
}
int main() {
int arr[] = {10, 9, 2, 5, 3, 7, 101, 18};
int n = sizeof(arr) / sizeof(arr[0]);
printf("Length of Longest Increasing Subsequence: %d\n", lengthOfLIS(arr, n));
return 0;
}
4. 总结
动态规划通过将问题分解为子问题,并存储子问题的解来提高效率,适用于许多经典问题。通过熟悉动态规划的思路,掌握如何定义状态、写出状态转移方程,可以高效地解决复杂问题。