python-tensorflow tensorboard代码

import tensorflow as tf

'''
1、scalar(标量)
2、image
3、audio
4、histogram
5、graph
'''

##可视化
#with tf.variable_scope("foo",reuse=tf.AUTO_REUSE):
#    with tf.device("/cpu:0"):
#        x_init1 = tf.Variable(name="init_x",dtype=tf.float32,initial_value=tf.random_normal(shape=[10]))
#        x = tf.Variable(initial_value=x_init1,name='x')
#        y = tf.constant(3.0)
#        z = x+y
#        
#with tf.variable_scope("bar"):
#    a = tf.constant(3.0)+4.0
#
#w = z*a
#    
##开始记录信息
#tf.summary.scalar(name='scalar_init_x',tensor=x_init1)
#tf.summary.scalar(name='scalar_x',tensor=x)
#tf.summary.scalar(name='scalar_y',tensor=y)
#tf.summary.scalar(name="scalar_z",tensor=z)
#tf.summary.scalar(name='scalar_w',tensor=w)
#
##更新操作
#assign_op = tf.assign(ref=x,value=x+1)
#with tf.control_dependencies([assign_op]):
#    with tf.device("/gpu:0"):
#        out = x*y
#    tf.summary.scalar("scalar_out",out)
#        
#
#with tf.Session(config=tf.ConfigProto(log_device_placement=True,allow_soft_placement=True)) as sess:
#    #merge all summery
#    merged_summary = tf.summary.merge_all()
#    #得到输出到文件的对象
#    writer = tf.summary.FileWriter('./result',sess.graph)
#    
#    #变量全局初始化
#    sess.run(tf.global_variables_initializer())
#    
#    #print
#    for i in range(1,5):
#        #summary = sess.run(merged_summary)
#        r_out,r_x,r_w = sess.run([out,x,w])
#        #writer.add_summary(summary,i)
#        print("{},{},{}".format(r_out,r_x,r_w))

import numpy as np 
def add_layer(inputs,in_size,out_size,n_layer,activation_funtion=None):
    layer_name='layer%s'%n_layer
    with tf.name_scope('layer'):
        with tf.name_scope('weight'):
            Weights=tf.Variable(tf.random_normal([in_size,out_size]),name='W')
            tf.summary.histogram(layer_name+'/Weights',Weights)  #各层网络权重,偏置的分布,用histogram_summary函数
        with tf.name_scope('biases'):
            biases=tf.Variable(tf.zeros([1,out_size])+0.1,name='b')
            tf.summary.histogram(layer_name+'/biases',biases)
        with tf.name_scope('Wx_plus_b'):
            Wx_plus_b=tf.matmul(inputs,Weights)+biases  #inputs与weight 顺序不能换
        if activation_funtion is None:
            output=Wx_plus_b
        else:
            output=activation_funtion(Wx_plus_b)
        tf.summary.histogram(layer_name+'/output',output)
    return output
 
x_data = np.linspace(-1,1,300, dtype=np.float32)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape).astype(np.float32)
y_data = np.square(x_data) - 0.5 + noise

with tf.name_scope('inputs'):
    xs=tf.placeholder(tf.float32,[None,1],name='x_in')
    ys=tf.placeholder(tf.float32,[None,1],name='y_in')
 
l1=add_layer(xs,1,10,n_layer=1,activation_funtion=tf.nn.relu)
prediction=add_layer(l1,10,1,n_layer=2,activation_funtion=None)
 
# loss=tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),
#                     reduction_indices=[1]))
with tf.name_scope('loss'):
    loss=tf.reduce_mean(tf.square(ys-prediction))
    tf.summary.scalar('loss',loss)  #数值如学习率,损失函数用scalar_summary函数,tf.scalar_summary(节点名称,获取的数据)
optimizer=tf.train.GradientDescentOptimizer(0.1)
with tf.name_scope('train'):
    train=optimizer.minimize(loss)
 
#变量全局初始化
init = tf.global_variables_initializer()  
sess=tf.Session()
sess.run(init)

#整个图经常需要检测许许多多的值,也就是许多值需要summary operation,一个个去run来启动太麻烦了,所以就合并所有获得的值
merged=tf.summary.merge_all()#合并所有的summary data的获取函数,merge_all 可以将所有summary全部保存到磁盘,以便tensorboard显示。如果没有特殊要求,一般用这一句就可一显示训练时的各种信息了。
writer=tf.summary.FileWriter("logs/",sess.graph)#把图保存到一个路径,FileWriter从tensorflow获取summary data,然后保存到指定路径的日志文件中
for i in range(1000):
    sess.run(train,feed_dict={xs:x_data,ys:y_data})
    if i%50==0:
        #summary的操作对于整个图来说相当于是外设,因为tensorflow是由结果驱动的,而图的结果并不依赖于summary操作,所以summary操作需要被run
        rs=sess.run(merged,feed_dict={xs:x_data,ys:y_data})#运行所有合并所有的图,获取summary data函数节点和graph是独立的,调用的时候也需要运行session
        writer.add_summary(rs,i)#把数据添加到文件中,每一次run的信息和得到的数据加到writer里面,主要是描述数据变化,所以要这样,若是只有流图,就不需要这样
 
        # print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))

 

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页