pytorch-lr_scheduler.LambdaLR函数,更新学习率的管理工具

理论:

LambdaLR更新学习率方式是 lr = lr*lr_lambda

其中,lr由optim系列优化器提供,lr_lambda由lr_scheduler>lambdaLR提供

假设,lr初始值为0.4, 

更新学习率函数lambda表达式为:lr_lambda = lambda epoch:0.1*epoch)

epoch的初始值为0

则,lr的变化规律应该是

0.4*0.1*0=0

0.4*0.1*1=0.04

0.4*0.1*2=0.08

......

实验:

import torch
from torch import nn

torch.manual_seed(0)
class model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels=1,out_channels=1,kernel_size=2,stride=1,padding=0)
        self.conv2 = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=2, stride=1, padding=0)
    def forward(self,x):
        out = self.conv1(x)
        return out

net1 = model()

optimizer_1 = torch.optim.SGD(net1.parameters(),lr = 0.4)
scheduler_1 = torch.optim.lr_scheduler.LambdaLR(optimizer_1,lr_lambda = lambda epoch:0.1*epoch)

print('\n当前学习率')
print(scheduler_1.get_lr())

for i in range(10):
    scheduler_1.step()              # 更新学习率
    print(scheduler_1.get_lr())

结果:

 证明完毕!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值