欧几里得算法---求最大公约数

欧几里得算法能够求出两个数值的最大公约数。此算法的确立虽然已经过去2000多年,但因其实现逻辑简单又明确,所以至今还在沿用。具体内容如下。

给出两个任意自然数 m 和 n ,为了便于说明,假设 m 总是大于等于 n 。即使如此假设也不会失去算法的通用性,因为必要时可以将 m 和 n 对调。此时,求 m 和 n 的最大公约数。

int gcd(int m, int n)
{   
    int r = 0;

    if (n > m)
    {
        swap(m, n);  // 对调 m 和 n,保证假设成立
    }
    
    while (n > 0)
    {
        r = m % n;
        m = n;
        n = r;
    }

    return m;
}

可通过求两个自然数 582 和 129 的最大公约数来验证算法。答案:最大公约数为 3。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智小星

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值