leetcode 11 Container With Most Water

原题链接:Container With Most Water - LeetCode

题目

Given n non-negative integers a1, a2, ..., an , where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of the line i is at (i, ai) and (i, 0). Find two lines, which, together with the x-axis forms a container, such that the container contains the most water.

Notice that you may not slant the container.

Example 1:

img

Input: height = [1,8,6,2,5,4,8,3,7]
Output: 49
Explanation: The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49.

Example 2:

Input: height = [1,1]
Output: 1

Example 3:

Input: height = [4,3,2,1,4]
Output: 16

Example 4:

Input: height = [1,2,1]
Output: 2

Constraints:

  • n == height.length
  • 2 <= n <= 105
  • 0 <= height[i] <= 104

解法1

首先能想到的是,这里的容器水面积等于长度*宽度,宽度是两条线之间距离(j-i),高度是两条线中短线的高度(min(height[i], height[j]))。

遍历每两条线可以暴力破解这道题,但是时间复杂度为O(n^2)。

解法2

可以观察到,如果从两边的线开始向内移动的话,因为宽度在变小,唯一可能让面积更大的是让高度更高。而短线和任意一条线组成容器的高度都不可能让高度更高,所以让指向短线的指针向内移动。

举个例子来说,如果height[i] < height[j],那么对于i和j之间的任意下标k,min(height[i], height[k]) <= height[i]都成立,所以i和k组成的面积不可能大于i和j组成的容器,即min(height[i], height[k])*(j-k) <= height[i]*(j-i)。这时可以将i加1来略过这些无用的组合。

这种解法的时间复杂度为O(n)。

class Solution:
    def maxArea(self, height: List[int]) -> int:
        i, j = 0, len(height) - 1
        max_area = 0
        while i < j:
            if height[i] < height[j]:
                area = height[i] * (j - i)
                i += 1
            else:
                area = height[j] * (j - i)
                j -= 1
            max_area = max(max_area, area)
        return max_area

解法2优化

还有个很细节的点可以优化,就是当height[i] == height[j]时,可以同时让i加1和j减1。因为这时i和k组成的面积不可能大于i和j组成的容器,j和k组成的面积也不可能大于i和j组成的容器。

时间复杂度没有变,还是O(n)。

class Solution:
    def maxArea(self, height: List[int]) -> int:
        i, j = 0, len(height) - 1
        max_area = 0
        while i < j:
            if height[i] < height[j]:
                area = height[i] * (j - i)
                i += 1
            elif height[i] > height[j]:
                area = height[j] * (j - i)
                j -= 1
            else:
                area = height[j] * (j - i)
                i += 1
                j -= 1
            max_area = max(max_area, area)
        return max_area
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值