xmu 1029.矩阵链乘法(动态规划递归与非递归)

1029.矩阵链乘法
Time Limit: 1000 MS          Memory Limit: 65536 K 
Total Submissions: 2703 (855 users)          Accepted: 1228 (818 users) 
[ My Solution ]

Description

    给定一个有N个矩阵的矩阵链A1A2A3...An,矩Ai的维数为pi-1*pi。我们都知道,使用朴素的矩阵乘法去乘两个维数分别为x,y和y,z的矩阵,所需要的乘法次数为x*y*z。矩阵链乘法问题就是如何对矩阵乘积加括号,使得它们的乘法次数达到最少。

Input

    输入的第一行为一个正整数N(1<=N<=200)。表示矩阵的个数。
    输入的第二行包含N+1个整数,分别表示pi(0<=i<=N),其中每个pi在[1,200]范围内。

Output

    输出一个整数表示最少要进行的乘法次数。

Sample Input

3

1 2 3 4

Sample Output

18

Source
xmu
//递归
#include<iostream>  
#include<cstdio>  
#include<cstring>  
#include<string>  
#include<algorithm>  
using namespace std;  
int a[201],f[201][201];  
int ans;  
int n;  
int dfs(int s,int e)  
{  
    int i,j,k,l;  
    int x,y,z,v;  
    if(e-s<2||f[s][e]!=0)return  f[s][e];  
f[s][e]=dfs(s,s+1)+dfs(s+1,e)+a[s]*a[s+1]*a[e];  
    for(i=s+2;i<e;i++)  
    f[s][e]=min( f[s][e],dfs(s,i)+dfs(i,e)+a[s]*a[i]*a[e]);  
    return f[s][e];  
}  
int main()  
{  
    int i;  
    while(cin>>n)  
    {  
        memset(f,0,sizeof(f));  
    for(i=0;i<=n;i++)  
        scanf("%d",&a[i]);  
  
    cout<<dfs(0,n)<<endl;  
    }  
return 0;  
}  

//非递归
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 210
int a[N],f[N][N];
int main(){
	int n,i,j,k,t,l,r;
	while(scanf("%d",&n)!=EOF){
		a[0]=1;
		for(i=0;i<=n;i++)scanf("%d",&a[i]);
		memset(f,0,sizeof(f));
		for(i=2;i<=n;i++){//矩阵长度
			for(j=0;j<=n-i;j++){//以j为起点
				for(k=j+1;k<j+i;k++){//以k为中转点
					//运算数sum=f[j][k]+f[k][j+i]+a[j]*a[k]*a[j+i]
					//cout<<j<<" "<<k<<" "<<j+i<<endl;
					t=f[j][k]+f[k][j+i]+a[j]*a[k]*a[j+i];
					if(f[j][j+i]==0||f[j][j+i]>t)f[j][j+i]=t;
				}
			}//cout<<"********"<<endl;
		}
		printf("%d\n",f[0][n]);
	}
return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值