1029.矩阵链乘法
Time Limit: 1000 MS
Memory Limit: 65536 K
Total Submissions: 2703 (855 users) Accepted: 1228 (818 users)
[ My Solution ]
Total Submissions: 2703 (855 users) Accepted: 1228 (818 users)
[ My Solution ]
Description
给定一个有N个矩阵的矩阵链A1A2A3...An,矩Ai的维数为pi-1*pi。我们都知道,使用朴素的矩阵乘法去乘两个维数分别为x,y和y,z的矩阵,所需要的乘法次数为x*y*z。矩阵链乘法问题就是如何对矩阵乘积加括号,使得它们的乘法次数达到最少。
Input
输入的第一行为一个正整数N(1<=N<=200)。表示矩阵的个数。
输入的第二行包含N+1个整数,分别表示pi(0<=i<=N),其中每个pi在[1,200]范围内。
Output
输出一个整数表示最少要进行的乘法次数。
Sample Input
3
1 2 3 4
Sample Output
18
Source
xmu
//递归
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
int a[201],f[201][201];
int ans;
int n;
int dfs(int s,int e)
{
int i,j,k,l;
int x,y,z,v;
if(e-s<2||f[s][e]!=0)return f[s][e];
f[s][e]=dfs(s,s+1)+dfs(s+1,e)+a[s]*a[s+1]*a[e];
for(i=s+2;i<e;i++)
f[s][e]=min( f[s][e],dfs(s,i)+dfs(i,e)+a[s]*a[i]*a[e]);
return f[s][e];
}
int main()
{
int i;
while(cin>>n)
{
memset(f,0,sizeof(f));
for(i=0;i<=n;i++)
scanf("%d",&a[i]);
cout<<dfs(0,n)<<endl;
}
return 0;
}
//非递归
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 210
int a[N],f[N][N];
int main(){
int n,i,j,k,t,l,r;
while(scanf("%d",&n)!=EOF){
a[0]=1;
for(i=0;i<=n;i++)scanf("%d",&a[i]);
memset(f,0,sizeof(f));
for(i=2;i<=n;i++){//矩阵长度
for(j=0;j<=n-i;j++){//以j为起点
for(k=j+1;k<j+i;k++){//以k为中转点
//运算数sum=f[j][k]+f[k][j+i]+a[j]*a[k]*a[j+i]
//cout<<j<<" "<<k<<" "<<j+i<<endl;
t=f[j][k]+f[k][j+i]+a[j]*a[k]*a[j+i];
if(f[j][j+i]==0||f[j][j+i]>t)f[j][j+i]=t;
}
}//cout<<"********"<<endl;
}
printf("%d\n",f[0][n]);
}
return 0;
}