Elasticsearch——分页查询From&Size VS scroll

Elasticsearch中数据都存储在分片中,当执行搜索时每个分片独立搜索后,数据再经过整合返回。那么,如果要实现分页查询该怎么办呢?
更多内容参考Elasticsearch资料汇总

按照一般的查询流程来说,如果我想查询前10条数据:

  • 1 客户端请求发给某个节点
  • 2 节点转发给个个分片,查询每个分片上的前10条
  • 3 结果返回给节点,整合数据,提取前10条
  • 4 返回给请求客户端

那么当我想要查询第10条到第20条的数据该怎么办呢?这个时候就用到分页查询了。

from-size"浅"分页

"浅"分页的概念是小博主自己定义的,可以理解为简单意义上的分页。它的原理很简单,就是查询前20条数据,然后截断前10条,只返回10-20的数据。这样其实白白浪费了前10条的查询。

查询的方法如:

{
    "from" : 0, "size" : 10,
    "query" : {
        "term" : { "user" : "kimchy" }
    }
}

其中,from定义了目标数据的偏移值,size定义当前返回的事件数目。
默认from为0,size为10,即所有的查询默认仅仅返回前10条数据。

做过测试,越往后的分页,执行的效率越低。
通过下图可以看出,刨去一些异常的数据,总体上还是会随着from的增加,消耗时间也会增加。而且数据量越大,效果越明显!

449064-20160315225923709-2095565417.png

也就是说,分页的偏移值越大,执行分页查询时间就会越长!

scroll“深”分页

相对于from和size的分页来说,使用scroll可以模拟一个传统数据的游标,记录当前读取的文档信息位置。这个分页的用法,不是为了实时查询数据,而是为了一次性查询大量的数据(甚至是全部的数据)。

因为这个scroll相当于维护了一份当前索引段的快照信息,这个快照信息是你执行这个scroll查询时的快照。在这个查询后的任何新索引进来的数据,都不会在这个快照中查询到。但是它相对于from和size,不是查询所有数据然后剔除不要的部分,而是记录一个读取的位置,保证下一次快速继续读取。

API使用方法如:

curl -XGET 'localhost:9200/twitter/tweet/_search?scroll=1m' -d '
{
    "query": {
        "match" : {
            "title" : "elasticsearch"
        }
    }
}
'

会自动返回一个_scroll_id,通过这个id可以继续查询(实际上这个ID会很长哦!):

curl -XGET  'localhost:9200/_search/scroll?scroll=1m&scroll_id=c2Nhbjs2OzM0NDg1ODpzRlBLc0FXNlNyNm5JWUc1'

注意,我在使用1.4版本的ES时,只支持把参数放在URL路径里面,不支持在JSON body中使用。

有个很有意思的事情,细心的会发现,这个ID其实是通过base64编码的:

cXVlcnlUaGVuRmV0Y2g7MTY7MjI3NTp2dFhLSjhsblFJbWRpd2NEdFBULWtBOzIyNzQ6dnRYS0o4bG5RSW1kaXdjRHRQVC1rQTsyMjgwOnZ0WEtKOGxuUUltZGl3Y0R0UFQta0E7MjI4MTp2dFhLSjhsblFJbWRpd2NEdFBULWtBOzIyODM6dnRYS0o4bG5RSW1kaXdjRHRQVC1rQTsyMjgyOnZ0WEtKOGxuUUltZGl3Y0R0UFQta0E7MjI4Njp2dFhLSjhsblFJbWRpd2NEdFBULWtBOzIyODc6dnRYS0o4bG5RSW1kaXdjRHRQVC1rQTsyMjg5OnZ0WEtKOGxuUUltZGl3Y0R0UFQta0E7MjI4NDp2dFhLSjhsblFJbWRpd2NEdFBULWtBOzIyODU6dnRYS0o4bG5RSW1kaXdjRHRQVC1rQTsyMjg4OnZ0WEtKOGxuUUltZGl3Y0R0UFQta0E7MjI3Njp2dFhLSjhsblFJbWRpd2NEdFBULWtBOzIyNzc6dnRYS0o4bG5RSW1kaXdjRHRQVC1rQTsyMjc4OnZ0WEtKOGxuUUltZGl3Y0R0UFQta0E7MjI3OTp2dFhLSjhsblFJbWRpd2NEdFBULWtBOzA7

如果使用解码工具可以看到:

queryThenFetch;16;2275:vtXKJ8lnQImdiwcDtPT-kA;2274:vtXKJ8lnQImdiwcDtPT-kA;2280:vtXKJ8lnQImdiwcDtPT-kA;2281:vtXKJ8lnQImdiwcDtPT-kA;2283:vtXKJ8lnQImdiwcDtPT-kA;2282:vtXKJ8lnQImdiwcDtPT-kA;2286:vtXKJ8lnQImdiwcDtPT-kA;2287:vtXKJ8lnQImdiwcDtPT-kA;2289:vtXKJ8lnQImdiwcDtPT-kA;2284:vtXKJ8lnQImdiwcDtPT-kA;2285:vtXKJ8lnQImdiwcDtPT-kA;2288:vtXKJ8lnQImdiwcDtPT-kA;2276:vtXKJ8lnQImdiwcDtPT-kA;2277:vtXKJ8lnQImdiwcDtPT-kA;2278:vtXKJ8lnQImdiwcDtPT-kA;2279:vtXKJ8lnQImdiwcDtPT-kA;0;

虽然搞不清楚里面是什么内容,但是看到了一堆规则的键值对,总是让人兴奋一下!

测试from&size VS scroll的性能

首先呢,需要在java中引入elasticsearch-jar,比如使用maven:

<dependency>
    <groupId>org.elasticsearch</groupId>
    <artifactId>elasticsearch</artifactId>
    <version>1.4.4</version>
</dependency>

然后初始化一个client对象:

private static TransportClient client;
    private static String INDEX = "index_name";
    private static String TYPE = "type_name";
    
    public static TransportClient init(){
        Settings settings = ImmutableSettings.settingsBuilder()
                 .put("client.transport.sniff", true)
                 .put("cluster.name", "cluster_name")
                 .build();
        client = new TransportClient(settings).addTransportAddress(new InetSocketTransportAddress("localhost",9300));
        return client;
    }
    public static void main(String[] args) {
        TransportClient client = init();
        //这样就可以使用client执行查询了
    }

然后就是创建两个查询过程了 ,下面是from-size分页的执行代码:

System.out.println("from size 模式启动!");
Date begin = new Date();
long count = client.prepareCount(INDEX).setTypes(TYPE).execute().actionGet().getCount();
SearchRequestBuilder requestBuilder = client.prepareSearch(INDEX).setTypes(TYPE).setQuery(QueryBuilders.matchAllQuery());
for(int i=0,sum=0; sum<count; i++){
    SearchResponse response = requestBuilder.setFrom(i).setSize(50000).execute().actionGet();
    sum += response.getHits().hits().length;
    System.out.println("总量"+count+" 已经查到"+sum);
}
Date end = new Date();
System.out.println("耗时: "+(end.getTime()-begin.getTime()));

下面是scroll分页的执行代码,注意啊!scroll里面的size是相对于每个分片来说的,所以实际返回的数量是:分片的数量*size

System.out.println("scroll 模式启动!");
begin = new Date();
SearchResponse scrollResponse = client.prepareSearch(INDEX)
    .setSearchType(SearchType.SCAN).setSize(10000).setScroll(TimeValue.timeValueMinutes(1)) 
    .execute().actionGet();  
count = scrollResponse.getHits().getTotalHits();//第一次不返回数据
for(int i=0,sum=0; sum<count; i++){
    scrollResponse = client.prepareSearchScroll(scrollResponse.getScrollId())  
        .setScroll(TimeValue.timeValueMinutes(8))  
    .execute().actionGet();
    sum += scrollResponse.getHits().hits().length;
    System.out.println("总量"+count+" 已经查到"+sum);
}
end = new Date();
System.out.println("耗时: "+(end.getTime()-begin.getTime()));

我这里总的数据有33万多,分别以每页5000,10000,50000的数据量请求,得到如下的执行时间:

449064-20160316104053459-1954636135.png

可以看到仅仅30万,就相差接近一倍的性能,更何况是如今的大数据环境...因此,如果想要对全量数据进行操作,快换掉fromsize,使用scroll吧!

参考

1 简书:elasticsearch 的滚动(scroll)
2 16php:Elasticsearch Scroll API详解
3 elastic:from-size查询
4 elastic:scroll query

为了实现分页查询Elasticsearch提出了一种scroll滚动的方式。使用scroll,每次只能获取一页的内容,并返回一个scroll_id。通过这个scroll_id可以不断地获取下一页的内容。值得注意的是,scroll不适用于有跳页的情景。为了使用scroll,我们需要将from设置为0,并指定size来确定每次查询返回的数量。同时,还可以通过设置scroll_id的过期时间来控制scroll的有效期。比如,可以通过设置scroll=5m来保留scroll_id 5分钟可用。 在Java中处理scroll分页查询时,可以使用循环查询的方式。首先进行一次初始化查询,按照需要的查询条件处理,并加上scroll参数。之后的查询都可以使用GET /_search/scroll/接口传递scroll_id来查询。如果返回的数据为空,则表示已经查询完毕,可以终止循环。这样就实现了分页查询的效果。 另外,对于初始化查询,我们可以传递参数scroll=5m给Elasticsearch,它会返回一个base64编码的长字符串作为_scroll_id。这个_scroll_id可以在下次查询时传入,用于继续获取下一页的数据。同时,可以通过指定size参数来控制每次滚动拉取的数据量。需要注意的是,如果做了分片,查询结果可能会超过指定的size大小。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [ES(elasticsearch) - 三种姿势进行分页查询](https://blog.csdn.net/ChengHuanHuaning/article/details/117696054)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [ES - 滚动查询(scroll)](https://blog.csdn.net/qq_36428889/article/details/118727603)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值