数组篇刷题模板总结——双指针
双指针通常出现在数组和链表里面,可以将双指针粗略分为两类,一类是快慢指针,一类是左右指针。前者解决主要解决链表中的问题,比如典型的判定链表中是否包含环;后者主要解决数组(或者字符串)中的问题,比如二分查找。后文将详细探讨和总结。
快慢指针
快慢指针一般都初始化指向链表的头结点 head
,前进时快指针 fast
在前,慢指针 slow
在后,巧妙解决一些链表中的问题。
1、判定链表中是否含有环
题目描述
给定一个链表,判断链表中是否有环。
解题思路
通过快慢指针进行辅助判断。若链表无环,则快指针最终会指向null,表明结果;若链表有环,则快指针最终会比慢指针快一圈直至相遇,此时同样表明结果。
代码实现
public boolean hasCycle(ListNode head) {
ListNode fast,slow;
fast = head;
slow = head;
while (fast != null && fast.next != null) {
fast = fast.next.next;
slow = slow.next;
if (fast == slow) {
return true;
}
}
return false;
}
2、已知链表中含有环,返回这个环的起始位置
题目描述
解题思路
不难得出,在第一次相遇时,假设慢指针 slow
走了 k
步,那么快指针 fast
一定走了 2k
步;设相遇点距环的起点的距离为 m
,那么环的起点距头结点 head
的距离为 k - m
,也就是说如果从 head
前进 k - m
步就能到达环起点。如果从相遇点继续前进 k - m
步,也恰好到达环起点。不用管 fast
在环里到底转了几圈,反正走 k
步可以到相遇点,那走 k - m
步一定就是走到环起点了。
代码实现
public ListNode detectCycle(ListNode head) {
ListNode fast, slow;
fast = head;
slow = head;
while (fast != null && fast.next != null) {
fast = fast.next.next;
slow = slow.next;
if (fast == slow) {
break;
}
}
// 注意:这个判定条件不能少并且有两个作用:1.刚开始判定链表是否为空 2.双指针第一次相遇之后判断fast是否为空
if (fast == null || fast.next == null) {
return null;
}
slow = head;
while (fast != slow) {
fast = fast.next;
slow = slow.next;
}
return slow;
}
3、寻找链表的中点
解题思路
同上面,只要把快指针的速度设为慢指针的两倍,则快指针到链表尾时,慢指针恰好停在链表中间。
代码实现
public ListNode middleNode(ListNode head) {
ListNode fast, slow;
fast = head;
slow = head;
while (fast != null && fast.next != null) {
fast = fast.next.next;
slow = slow.next;
}
return slow;
}
4、寻找链表的倒数第 n 个元素
解题思路
同样采用快慢指针的方法,定义快慢指针初始位置为指向首元节点,让快指针先走n个位置,然后快慢指针以同一速度,直至快指针走到数组尾,此时slow对应的next即要删除的倒数第n个元素。
代码实现
public int removeNthFromEnd(ListNode head, int n) {
ListNode fast, slow;
fast = slow = head;
while (n-- > 0) {
fast = fast.next;
}
// 注意:n限制不超过链表长度
if (fast == null) {
return head.next;
}
while (fast != null && fast.next != null) {
fast = fast.next;
slow = slow.next;
}
slow.next = slow.next.next;
return head;
}
左右指针
左右指针在数组中实际是指两个索引值,一般初始化为 left = 0, right = nums.length - 1
。
1、二分查找
不再赘述,手写一个框架即可。(查找某个数组中具体值位置)
public int binarySearch(int[] nums, int target) {
if (nums.length <= 0) {
return -1;
}
int left = 0;
int right = nums.length - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (target < nums[mid]) {
right = mid -1;
}
else if (target > nums[mid]) {
left = mid + 1;
}
else {
return mid;
}
}
return -1;
}
2、经典老番:TwoSum 2.0
题目描述
解题思路
本题是twosum升级版,不过同样很简单。题目说明数组单调有序,则应该想到利用二分查找, 当左右指针对应值的和偏大,则调小;反之,亦然。
代码实现
public int[] twoSum(int[] numbers, int target) {
if (numbers.length <= 0) {
return new int[] {-1, -1};
}
int left = 0;
int right = numbers.length - 1;
while (left < right) {
int sum = numbers[left] + numbers[right];
if (sum == target) {
return new int[] {left + 1, right + 1};
}
else if (sum < target) {
left++;
}
else if (sum > target) {
right--;
}
}
return new int[] {-1, -1};
}
3、反转数组
思路简单,就直接写代码。
代码实现
public void reverseString(char[] s) {
int left = 0;
int right = s.length - 1;
while (left < right) {
char tmp = s[left];
s[left] = s[right];
s[right] = tmp;
left++;
right--;
}
}
4、滑动窗口
代码实现
public void reverseString(char[] s) {
int left = 0;
int right = s.length - 1;
while (left < right) {
char tmp = s[left];
s[left] = s[right];
s[right] = tmp;
left++;
right--;
}
}
4、滑动窗口
详情见下文。[]( ̄▽ ̄)*