大模型与个性化应用:从李彦宏的演讲看AI的未来发展

在2024年7月4日于上海世博中心举办的2024世界人工智能大会暨人工智能全球治理高级别会议全体会议上,百度创始人、董事长兼首席执行官李彦宏发表了重要演讲。他呼吁:“大家不要卷模型,要卷应用!”这一观点引发了业界的广泛讨论。

李彦宏认为,AI技术已经从辨别式转向了生成式,但技术本身并不是目的,真正的价值在于如何将这些技术应用于实际场景,解决实际问题。本文将对李彦宏的观点进行深入分析,并探讨大模型技术和个性化应用的关系,旨在为AI从业者和爱好者提供有价值的思考方向

目录

一、技术驱动与应用驱动的转变

1 技术驱动的局限性

2 应用驱动的优势 

二、超级应用陷阱的警示 

1 DAU不是唯一衡量标准

2 关注实际效果和产业价值

三、大模型技术与个性化应用的关系 

1 大模型技术的优势

2 个性化应用的需求

3 大模型与个性化应用的结合

四、结论


一、技术驱动与应用驱动的转变

李彦宏的演讲指出,当前AI技术的发展已经进入了生成式AI时代。这一阶段的AI不仅仅是对已有数据进行分析和分类,而是能够生成新的内容,创造新的价值。然而,他强调技术本身不是最终目标,真正有价值的是这些技术在实际场景中的应用。这一观点值得深思。

1 技术驱动的局限性

技术驱动往往关注于技术本身的突破,如模型的精度、计算速度等。然而,这种方式容易导致资源的浪费和无效竞争。例如,各大公司在模型参数规模上不断攀比,但这些“巨无霸”模型在实际应用中能否真正发挥效用却未必可知。技术驱动的结果可能是科技的“军备竞赛”,而忽略了真正需要解决的用户需求和市场痛点

2 应用驱动的优势 

应用驱动则强调技术的实际落地和效果。正如李彦宏所言,AI技术的真正价值在于应用于实际场景,解决实际问题。例如,在医疗领域,生成式AI可以帮助医生快速生成诊断报告,提高诊断效率;在自动驾驶领域,AI可以提升车辆的安全性能,减少交通事故。应用驱动的方式更关注于技术的实际效用和产业价值,避免掉入“超级应用陷阱”。

二、超级应用陷阱的警示 

李彦宏在演讲中提醒大家避免掉入“超级应用陷阱”,即过分追求用户日活跃量(DAU)而忽视了应用的实际效果和产业价值。这一观点对当前的互联网行业具有重要的警示意义。

1 DAU不是唯一衡量标准

传统的移动互联网时代,DAU是衡量应用成功与否的关键指标。然而,在AI时代,应用的价值可能不再仅仅体现在用户活跃度上。例如,一款能够精准诊断疾病的AI医疗应用,即使用户量不高,但只要能够为医疗行业带来实质性的增益,其价值远超传统的娱乐类应用

2 关注实际效果和产业价值

在AI应用的开发过程中,应更加关注实际效果和产业价值。例如,在工业制造领域,AI可以优化生产流程,提高生产效率;在金融领域,AI可以进行风险评估,降低金融风险。只有将技术真正应用于这些实际场景,才能体现出AI的真正价值

三、大模型技术与个性化应用的关系 

大模型技术和个性化应用是当前AI发展的两个重要方向。两者之间既有联系,也有区别。理解它们的关系,对于推动AI技术的进步和应用的落地具有重要意义。

1 大模型技术的优势

大模型技术具有强大的学习和推理能力,能够处理复杂的任务。例如,GPT-3和GPT-4这样的生成式预训练模型,可以进行自然语言处理、图像生成等多种任务。这些大模型在技术上具有很高的精度和广泛的适用性

2 个性化应用的需求

尽管大模型技术强大,但在实际应用中,个性化需求往往更加重要。例如,在教育领域,每个学生的学习习惯和水平不同,AI需要根据每个学生的特点提供个性化的辅导;在电商领域,消费者的购买偏好各异,AI需要根据用户的历史数据进行个性化推荐。大模型技术需要与具体的应用场景结合,才能发挥出最大的价值

3 大模型与个性化应用的结合

大模型技术可以作为基础平台,为个性化应用提供支持。例如,通过对大模型进行微调,可以生成适应特定领域的子模型,从而满足具体应用的需求。此外,通过引入更多的用户数据和反馈,可以不断优化模型,提高个性化应用的效果

四、结论

李彦宏在2024世界人工智能大会上的演讲,为AI技术的发展和应用指明了方向。他强调,技术本身不是最终目的,真正的价值在于如何将这些技术应用于实际场景,解决实际问题。这一观点提醒AI从业者和研究者,应更加关注技术的实际落地和效果,避免掉入“超级应用陷阱”。

在未来的发展中,大模型技术和个性化应用将是两个重要的方向。大模型技术提供了强大的基础能力,而个性化应用则能够满足具体场景的需求。只有将两者有机结合,才能真正推动AI技术的发展,实现其在各个领域的广泛应用。

AI时代的到来,将给我们的生活和工作带来深刻的变革。作为AI从业者,我们需要不断探索和创新,将技术应用于实际场景,解决实际问题,创造真正的价值。希望本文能够为大家提供一些有价值的思考,推动AI技术的发展和应用。

读完后,我们做个小休息,投个票吧:

<think>嗯,用户想了解Excel中的VLOOKUP函数的用法和参数含义。首先,我需要回忆一下VLOOKUP的基本结构。VLOOKUP是垂直查找函数,用于在表格的首列查找指定的值,然后返回该行中指定列的数据。它的四个参数分别是查找值、表格范围、列索引号和匹配模式。 接下来,我得确认每个参数的具体作用。第一个参数是lookup_value,也就是用户要查找的值,比如产品ID或者姓名。第二个参数是table_array,即查找的范围,这里要注意的是,查找值必须位于这个范围的第一列,否则函数无法正确工作。第三个参数是col_index_num,也就是用户想要返回的数据在表格范围中的第几列,这个列数是从表格范围的第一列开始算起的,不是整个工作表的列。第四个参数是range_lookup,决定是精确匹配还是近似匹配,通常用FALSE或0来指定精确匹配,避免错误。 然后,用户可能需要一个具体的例子来理解如何使用。比如,假设有一个产品价格表,用户想根据产品ID查找对应的价格。这时候,VLOOKUP就可以在ID列查找,然后返回价格列的数据。同时,要提醒用户注意表格范围最好使用绝对引用,比如$A$2:$C$100,这样在拖动公式时范围不会变化。 可能遇到的问题也需要考虑。比如,如果查找值不在表格的第一列,或者列索引号超过了表格的列数,函数会返回错误。此外,数据格式不一致也可能导致问题,比如查找值是数字,而表格中是文本格式的数字,这时候需要统一格式。还有,当出现#N/A错误时,可能是查找值不存在,或者匹配模式设置不正确,需要检查参数是否正确。 用户可能还会问到如何避免常见的错误,比如部分数据匹配出错的情况。这时候需要检查是否有多余的空格,或者数据格式不一致,或者表格范围没有锁定导致拖动时偏移。此外,XLOOKUP作为VLOOKUP的升级版,可能在某些情况下更方便,比如可以向左查找或者返回多列数据,这也是可以提及的内容。 最后,整理步骤,从基础语法到参数说明,再到具体案例,逐步引导用户理解如何使用VLOOKUP函数。同时,提供常见错误和解决方法,帮助用户在实际应用中避免问题。如果有必要,还可以比较VLOOKUP和其他查找函数的区别,比如HLOOKUP或XLOOKUP,但根据用户的问题,主要集中在VLOOKUP本身即可。</think>### Excel VLOOKUP函数详解 #### 一、基础语法与参数说明 VLOOKUP函数的语法为: $$=VLOOKUP(lookup\_value, table\_array, col\_index\_num, [range\_lookup])$$ 包含4个参数: 1. **lookup_value**(必填):要查找的值(如单元格引用或具体值) 2. **table_array**(必填):包含数据的表格范围(必须包含查找列和返回列) 3. **col_index_num**(必填):返回值所在列的序号(从table_array第一列开始计数) 4. **range_lookup**(可选):匹配类型 - `TRUE`/`1`:近似匹配(默认值,需数据升序排列) - `FALSE`/`0`:精确匹配(常用选项) [^1][^2] #### 二、使用步骤演示(工资表查询案例) 假设需要根据员工编号查询工资: 1. 建立查询单元格(如`B12`) 2. 输入公式: ```excel =VLOOKUP(A12, $A$2:$D$100, 4, 0) ``` - `A12`:待查询的员工编号 - `$A$2:$D$100`:锁定数据区域(绝对引用) - `4`:返回第4列(工资列) - `0`:精确匹配 [^2][^3] #### 三、常见错误与解决方法 | 错误现象 | 原因 | 解决方案 | |---------|------|---------| | #N/A | 查找值不存在 | 检查数据源或改用`IFERROR`容错 | | #REF! | 列序号超出范围 | 确认col_index_num ≤ 表格列数 | | 部分匹配失败 | 数据格式不一致 | 统一数值/文本格式 | | 结果错位 | 表格未锁定 | 使用`$`符号固定区域引用 | [^3][^4] #### 四、进阶技巧 1. **多条件查询**: 使用辅助列合并多个条件字段 ```excel =VLOOKUP(A2&B2, $D$2:$F$100, 3, 0) ``` 2. **通配符匹配**: `"*"`匹配任意字符,`"?"`匹配单个字符 ```excel =VLOOKUP("张*", $A$2:$C$100, 3, 0) ``` 3. **跨表查询**: 引用其他工作表数据 ```excel =VLOOKUP(A2, Sheet2!$A$2:$D$100, 4, 0) ``` [^1][^4]
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

经海路大白狗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值