一个楼梯有50个台阶,一次只能走一个台阶或两个台阶,问,从第一台阶走到第50台阶,有多少种走法。
分析
走第1阶,1种走法;
走第2阶,2种走法;
走第3阶,3种走法,因为每次只能走1阶或2阶,所以,走到第3阶最近的阶,只能是从第1阶走来,或从第2阶走来,那么,走到第3阶的走法就是走到第1阶和走到第2阶的走法的和;
走第4阶,5种走法,因为每次只能走1阶或2阶,所以,走到第4阶最近的阶,只能是从第2阶走来,或从第3阶走来,那么,走到第4阶的走法就是走到第2阶和走到第3阶的走法的和;
…
走第48阶,因为每次只能走1阶或2阶,所以,走到第48阶最近的阶,只能是从第46阶走来,或从第47阶走来,那么,走到第48阶的走法就是走到第46阶和走到第47阶的走法的和;
走第49阶,因为每次只能走1阶或2阶,所以,走到第49阶最近的阶,只能是从第47阶走来,或从第48阶走来,那么,走到第49阶的走法就是走到第47阶和走到第48阶的走法的和;
走第50阶,因为每次只能走1阶或2阶,所以,走到第50阶最近的阶,只能是从第48阶走来,或从第49阶走来,那么,走到第50阶的走法就是走到第48阶和走到第49阶的走法的和;
经过分析,这个问题实际上是类斐波那契数列的问题。即从第3项开始,每项都为其前两项之和。这个问题,可以使用递归,循环或数组解决。
//递归解决
double taijie(int n)
{
if (n == 1)
{
return 1;
}
else if (n == 2)
{
return 2;
}
else
{
return taijie(n - 1) +taijie(n - 2);
}
}
//使用循环解决
float taijiexunhuan(intnum)
{
int n1 = 1;
int n2 = 2;
double res = 0.0;
for (int i = 2; i < num; i++)
{
res = n1 + n2;
n1 = n2;
n2 = res;
}
return res;
}
//使用数组解决
float taijieshuzu(intn)
{
float a[50];
a[0] = 1.0;
a[1] = 2.0;
for (int i = 2; i < n; i++)
{
a[i] = a[i - 1] + a[i - 2];
}
return a[n - 1];
}
void main()
{
printf("%lf", taijie(4));
printf("\n%lf",taijiexunhuan(4));
printf("\n%lf",taijieshuzu(4));
getchar();
}
如果这个问题被扩展了,一次可以走1阶,2阶,3阶,推理的原理是类似的,结果就是从第4阶开始,每阶走法都为前三阶走法之和。变成每次走更多阶也类似。