264. Ugly Number II

Write a program to find the n-th ugly number.

Ugly numbers are positive numbers whose prime factors only include 2, 3, 5. For example, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12 is the sequence of the first 10 ugly numbers.

Note that 1 is typically treated as an ugly number, and n does not exceed 1690.

s思路:
1. 丑数相互间是有关系的,一个丑数乘以2,3,5仍是丑数,所以,尝试从1开始,1*2,1*3,1*5都是丑数,但是在3和5之间还有一个丑数:2*2,也就是说直接这么乘的话,丑数顺序是不能保证的。现在的问题,如何保证顺序呢?
2. 看了答案,确实很妙!讨论一下如何想到的?首先,当前的丑数是前面的丑数乘以2,3,5后得到的,这个很容易想到。问题是,如何找到谁和2乘,谁和3乘,谁和5乘。例如:1,2,3,4下一个丑数应该是多少呢?由于1已经乘过2和3了,所以1还可以乘以5;2已经乘过2,还可以乘3,5;3还没乘过谁,所以下一个就是比较:1*5,2*3,3*2的大小;那么1,2,3,4,5下一个丑数呢?由于1已经乘以2,3,5,所以就没1的什么事情了,2还可以乘3、5,3还可以乘2、3、5,4还可以乘2\3\5,也就是说越往后我们发现要看的数就很多,有点束手无策。怎么办?
3. 想起之前讨论的发现问题很复杂的时候,不是问题自身复杂,是自己看问题的角度没摆好,尝试换角度看问题,所谓立场决定眼界嘛。怎么换角度?首先明白这个过程涉及哪些对象?有已经得到的丑数,还有2\3\5三个丑数因子,一共就两个对象。再明确我们现在看问题的角度是每个丑数乘到2\3\5的哪一个了,换角度就是以2\3\5为考虑对象,考虑2现在乘到哪个丑数了,3现在乘到哪个位置了,还有5乘到哪个位置了?这么看问题,问题一下就简化了,因为研究对象就只有3个了,而不是之前的丑数越来越多,越力不从心!如何找相反问题,确实需要多加练习!
4. 这个转换角度看问题的方式,让我联想到傅里叶变换了,从时域讨论问题复杂,那就从频域来,就是换了一个角度,问题还是一个问题,但是换了一个角度讨论,立即马上看出简洁的一面。
5. 总结一下:现在我们假设和2乘,和3乘,和5乘的丑数起始坐标idx2,idx3,idx5都是0,或起始数都是1,然后比较的时候,就选max(num[idx2]*2,num[idx3]*3,num[idx5]*5),被选中的就让对应的idx往后移.
6. 讨论一下问题的规模,看到题,由于只有3个因子,也就是状态是有限个,一般也就需要3个变量就可以完全驾驭,问题就是找三个变量来表示。先对问题的规模认识后,做起来就不会一味想做到用一个变量来驾驭。现在很多题想半天没结果,都是潜意识没认识到问题的具体规模,而是要么认为很复杂,要很多变量,要么不知道多少个变量时就默认是一个变量搞得顶的,所以,拿到题还是应该首先明确问题的边界,这道题3个因子,就是边界,很明显的边界。所以最多三个变量就可以记录分别和2,3,5乘的数的位置,这样相当于维护了3个1维的dp向量。有趣!

class Solution {
public:
    int nthUglyNumber(int n) {
        //
        int idx2=0,idx3=0,idx5=0;
        vector<int> res(n,1);
        for(int i=1;i<n;i++){
            res[i]=min(2*res[idx2],min(3*res[idx3],5*res[idx5]));
            if(res[i]==2*res[idx2]) idx2++;
            if(res[i]==3*res[idx3]) idx3++;
            if(res[i]==5*res[idx5]) idx5++;
        }
        return res[n-1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值