==93.==复原IP地址
给定一个只包含数字的字符串,复原它并返回所有可能的 IP 地址格式。
有效的 IP 地址 正好由四个整数(每个整数位于 0 到 255 之间组成,且不能含有前导 0),整数之间用 ‘.’ 分隔。
例如:“0.1.2.201” 和 “192.168.1.1” 是 有效的 IP 地址,但是 “0.011.255.245”、“192.168.1.312” 和 “192.168@1.1” 是 无效的 IP 地址。
示例 1:
- 输入:s = “25525511135”
- 输出:[“255.255.11.135”,“255.255.111.35”]
示例 2:
- 输入:s = “0000”
- 输出:[“0.0.0.0”]
示例 3:
- 输入:s = “1111”
- 输出:[“1.1.1.1”]
示例 4:
- 输入:s = “010010”
- 输出:[“0.10.0.10”,“0.100.1.0”]
示例 5:
- 输入:s = “101023”
- 输出:[“1.0.10.23”,“1.0.102.3”,“10.1.0.23”,“10.10.2.3”,“101.0.2.3”]
提示:
切割问题就可以使用回溯搜索法把所有可能性搜出来
切割问题可以抽象为树型结构,如图:
startIndex一定是需要的,因为不能重复分割,记录下一层递归分割的起始位置。
本题我们还需要一个变量pointNum,记录添加逗点的数量。
所以代码如下:
List<String> result = new ArrayList<>();// 记录结果
// startIndex: 搜索的起始位置,pointNum:添加逗点的数量
private void backTrack(String s, int startIndex, int pointNum) {
- 递归终止条件
本题明确要求只会分成4段,所以不能用切割线切到最后作为终止条件,而是分割的段数作为终止条件。
pointNum表示逗点数量,pointNum为3说明字符串分成了4段了。
然后验证一下第四段是否合法,如果合法就加入到结果集里
代码如下:
if (pointNum == 3) { // 逗点数量为3时,分隔结束
// 判断第四段子字符串是否合法,如果合法就放进result中
if (isValid(s,startIndex,s.length()-1)) {
result.add(s);
}
return;
}
- 单层搜索的逻辑
在for (int i = startIndex; i < s.size(); i++)
循环中 [startIndex, i] 这个区间就是截取的子串,需要判断这个子串是否合法。
如果合法就在字符串后面加上符号.
表示已经分割。
如果不合法就结束本层循环,如图中剪掉的分支:
然后就是递归和回溯的过程:
递归调用时,下一层递归的startIndex要从i+2开始(因为需要在字符串中加入了分隔符.
),同时记录分割符的数量pointNum 要 +1。
回溯的时候,就将刚刚加入的分隔符.
删掉就可以了,pointNum也要-1。
代码如下:
for (int i = startIndex; i < s.length(); i++) {
if (isValid(s, startIndex, i)) {
s = s.substring(0, i + 1) + "." + s.substring(i + 1); //在str的后⾯插⼊⼀个逗点
pointNum++;
backTrack(s, i + 2, pointNum);// 插⼊逗点之后下⼀个⼦串的起始位置为i+2
pointNum--;// 回溯
s = s.substring(0, i + 1) + s.substring(i + 2);// 回溯删掉逗点
} else {
break;
}
}
最后就是在写一个判断段位是否是有效段位了。
主要考虑到如下三点:
- 段位以0为开头的数字不合法
- 段位里有非正整数字符不合法
- 段位如果大于255了不合法
代码如下:
// 判断字符串s在左闭又闭区间[start, end]所组成的数字是否合法
private Boolean isValid(String s, int start, int end) {
if (start > end) {
return false;
}
if (s.charAt(start) == '0' && start != end) { // 0开头的数字不合法
return false;
}
int num = 0;
for (int i = start; i <= end; i++) {
if (s.charAt(i) > '9' || s.charAt(i) < '0') { // 遇到非数字字符不合法
return false;
}
num = num * 10 + (s.charAt(i) - '0');
if (num > 255) { // 如果大于255了不合法
return false;
}
}
return true;
}
完整代码:
class Solution {
List<String> result = new ArrayList<>();
public List<String> restoreIpAddresses(String s) {
if (s.length() > 12) return result; // 算是剪枝了
backTrack(s, 0, 0);
return result;
}
// startIndex: 搜索的起始位置, pointNum:添加逗点的数量
private void backTrack(String s, int startIndex, int pointNum) {
if (pointNum == 3) {// 逗点数量为3时,分隔结束
// 判断第四段⼦字符串是否合法,如果合法就放进result中
if (isValid(s,startIndex,s.length()-1)) {
result.add(s);
}
return;
}
for (int i = startIndex; i < s.length(); i++) {
if (isValid(s, startIndex, i)) {
s = s.substring(0, i + 1) + "." + s.substring(i + 1); //在str的后⾯插⼊⼀个逗点
pointNum++;
backTrack(s, i + 2, pointNum);// 插⼊逗点之后下⼀个⼦串的起始位置为i+2
pointNum--;// 回溯
s = s.substring(0, i + 1) + s.substring(i + 2);// 回溯删掉逗点
} else {
break;
}
}
}
// 判断字符串s在左闭⼜闭区间[start, end]所组成的数字是否合法
private Boolean isValid(String s, int start, int end) {
if (start > end) {
return false;
}
if (s.charAt(start) == '0' && start != end) { // 0开头的数字不合法
return false;
}
int num = 0;
for (int i = start; i <= end; i++) {
if (s.charAt(i) > '9' || s.charAt(i) < '0') { // 遇到⾮数字字符不合法
return false;
}
num = num * 10 + (s.charAt(i) - '0');
if (num > 255) { // 如果⼤于255了不合法
return false;
}
}
return true;
}
}
//方法二:比上面的方法时间复杂度低,更好地剪枝,优化时间复杂度
class Solution {
List<String> result = new ArrayList<String>();
StringBuilder stringBuilder = new StringBuilder();
public List<String> restoreIpAddresses(String s) {
restoreIpAddressesHandler(s, 0, 0);
return result;
}
// number表示stringbuilder中ip段的数量
public void restoreIpAddressesHandler(String s, int start, int number) {
// 如果start等于s的长度并且ip段的数量是4,则加入结果集,并返回
if (start == s.length() && number == 4) {
result.add(stringBuilder.toString());
return;
}
// 如果start等于s的长度但是ip段的数量不为4,或者ip段的数量为4但是start小于s的长度,则直接返回
if (start == s.length() || number == 4) {
return;
}
// 剪枝:ip段的长度最大是3,并且ip段处于[0,255]
for (int i = start; i < s.length() && i - start < 3 && Integer.parseInt(s.substring(start, i + 1)) >= 0
&& Integer.parseInt(s.substring(start, i + 1)) <= 255; i++) {
// 如果ip段的长度大于1,并且第一位为0的话,continue
if (i + 1 - start > 1 && s.charAt(start) - '0' == 0) {
continue;
}
stringBuilder.append(s.substring(start, i + 1));
// 当stringBuilder里的网段数量小于3时,才会加点;如果等于3,说明已经有3段了,最后一段不需要再加点
if (number < 3) {
stringBuilder.append(".");
}
number++;
restoreIpAddressesHandler(s, i + 1, number);
number--;
// 删除当前stringBuilder最后一个网段,注意考虑点的数量的问题
stringBuilder.delete(start + number, i + number + 2);
}
}
}
- 时间复杂度: O(3^4),IP地址最多包含4个数字,每个数字最多有3种可能的分割方式,则搜索树的最大深度为4,每个节点最多有3个子节点。
- 空间复杂度: O(n)
78.子集
给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。
说明:解集不能包含重复的子集。
示例:
输入: nums = [1,2,3]
输出:
[[3], [1],[2],[1,2,3], [1,3],[2,3], [1,2],[]]
那么组合问题和分割问题都是收集树的叶子节点,而子集问题是找树的所有节点!
以示例中nums = [1,2,3]为例把求子集抽象为树型结构,如下:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-k7TkaEep-1692681579101)(https://code-thinking.cdn.bcebos.com/pics/78.%E5%AD%90%E9%9B%86.png)]
从图中红线部分,可以看出遍历这个树的时候,把所有节点都记录下来,就是要求的子集集合
全局变量数组path为子集收集元素,二维数组result存放子集组合。(也可以放到递归函数参数里)
递归函数参数在上面讲到了,需要startIndex。
代码如下:
List<List<Integer>> res=new ArrayList<>();
LinkedList<Integer> path=new LinkedList<>();
public void backtracking(int[] nums,int startIndex)
- 递归终止条件
从图中可以看出:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OpUd3kOz-1692681579101)(https://code-thinking.cdn.bcebos.com/pics/78.%E5%AD%90%E9%9B%86.png)]
剩余集合为空的时候,就是叶子节点。
那么什么时候剩余集合为空呢?
就是startIndex已经大于数组的长度了,就终止了,因为没有元素可取了,代码如下:
if (startIndex >= nums.length){ //终止条件可不加
return;
}
其实可以不需要加终止条件,因为startIndex >= nums.size(),本层for循环本来也结束了。
- 单层搜索逻辑
求取子集问题,不需要任何剪枝!因为子集就是要遍历整棵树。
那么单层递归逻辑代码如下:
for (int i = startIndex; i < nums.length; i++){
path.add(nums[i]);
backtracking(nums, i + 1);
path.removeLast();
}
完整代码
class Solution {
List<List<Integer>> res=new ArrayList<>();
LinkedList<Integer> path=new LinkedList<>();
public List<List<Integer>> subsets(int[] nums) {
backtracking(nums,0);
return res;
}
public void backtracking(int[] nums,int startIndex){
res.add(new ArrayList(path)); //遍历这个树的时候,把所有节点都记录下来,就是要求的子集集合。
if (startIndex >= nums.length){ //终止条件可不加
return;
}
for (int i = startIndex; i < nums.length; i++){
path.add(nums[i]);
backtracking(nums, i + 1);
path.removeLast();
}
}
}
- 时间复杂度: O(n * 2^n)
- 空间复杂度: O(n)
90.子集II
给定一个可能包含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。
说明:解集不能包含重复的子集。
示例:
结合78子集和40组合总和Ⅱ
class Solution {
List<List<Integer>> res=new ArrayList<>();
LinkedList<Integer> path=new LinkedList<>();
public List<List<Integer>> subsetsWithDup(int[] nums) {
Arrays.sort(nums); //去重需要排序
backtracking(nums,0);
return res;
}
public void backtracking(int[] nums,int startIndex){
res.add(new ArrayList(path));
for(int i=startIndex;i<nums.length;i++){
// 跳过当前树层使用过的、相同的元素
if(i>startIndex&&nums[i]==nums[i-1]){
continue;
}
path.add(nums[i]);
backtracking(nums,i+1);
path.removeLast();
}
}
}