代码随想录算法训练营day28|复原ip地址 78子集 9子集Ⅱ

==93.==复原IP地址

力扣题目链接

给定一个只包含数字的字符串,复原它并返回所有可能的 IP 地址格式。

有效的 IP 地址 正好由四个整数(每个整数位于 0 到 255 之间组成,且不能含有前导 0),整数之间用 ‘.’ 分隔。

例如:“0.1.2.201” 和 “192.168.1.1” 是 有效的 IP 地址,但是 “0.011.255.245”、“192.168.1.312” 和 “192.168@1.1” 是 无效的 IP 地址。

示例 1:

  • 输入:s = “25525511135”
  • 输出:[“255.255.11.135”,“255.255.111.35”]

示例 2:

  • 输入:s = “0000”
  • 输出:[“0.0.0.0”]

示例 3:

  • 输入:s = “1111”
  • 输出:[“1.1.1.1”]

示例 4:

  • 输入:s = “010010”
  • 输出:[“0.10.0.10”,“0.100.1.0”]

示例 5:

  • 输入:s = “101023”
  • 输出:[“1.0.10.23”,“1.0.102.3”,“10.1.0.23”,“10.10.2.3”,“101.0.2.3”]

提示:

  • 0 <= s.length <= 3000

  • s 仅由数字组成

  • 思路

切割问题就可以使用回溯搜索法把所有可能性搜出来

切割问题可以抽象为树型结构,如图:

93.复原IP地址

  • 回溯三部曲

  • 递归参数

startIndex一定是需要的,因为不能重复分割,记录下一层递归分割的起始位置。

本题我们还需要一个变量pointNum,记录添加逗点的数量。

所以代码如下:

List<String> result = new ArrayList<>();// 记录结果
// startIndex: 搜索的起始位置,pointNum:添加逗点的数量
private void backTrack(String s, int startIndex, int pointNum) {
  • 递归终止条件

本题明确要求只会分成4段,所以不能用切割线切到最后作为终止条件,而是分割的段数作为终止条件。

pointNum表示逗点数量,pointNum为3说明字符串分成了4段了。

然后验证一下第四段是否合法,如果合法就加入到结果集里

代码如下:

if (pointNum == 3) { // 逗点数量为3时,分隔结束
    // 判断第四段子字符串是否合法,如果合法就放进result中
    if (isValid(s,startIndex,s.length()-1)) {
           result.add(s);
          }
     return;
}
  • 单层搜索的逻辑

for (int i = startIndex; i < s.size(); i++)循环中 [startIndex, i] 这个区间就是截取的子串,需要判断这个子串是否合法。

如果合法就在字符串后面加上符号.表示已经分割。

如果不合法就结束本层循环,如图中剪掉的分支:

93.复原IP地址

然后就是递归和回溯的过程:

递归调用时,下一层递归的startIndex要从i+2开始(因为需要在字符串中加入了分隔符.),同时记录分割符的数量pointNum 要 +1。

回溯的时候,就将刚刚加入的分隔符. 删掉就可以了,pointNum也要-1。

代码如下:

for (int i = startIndex; i < s.length(); i++) {
   if (isValid(s, startIndex, i)) {
   s = s.substring(0, i + 1) + "." + s.substring(i + 1);    //在str的后⾯插⼊⼀个逗点
   pointNum++;
   backTrack(s, i + 2, pointNum);// 插⼊逗点之后下⼀个⼦串的起始位置为i+2
   pointNum--;// 回溯
   s = s.substring(0, i + 1) + s.substring(i + 2);// 回溯删掉逗点
   } else {
       break;
   }
}
  • 判断子串是否合法

最后就是在写一个判断段位是否是有效段位了。

主要考虑到如下三点:

  • 段位以0为开头的数字不合法
  • 段位里有非正整数字符不合法
  • 段位如果大于255了不合法

代码如下:

// 判断字符串s在左闭又闭区间[start, end]所组成的数字是否合法
 private Boolean isValid(String s, int start, int end) {
    if (start > end) {
        return false;
    }
     if (s.charAt(start) == '0' && start != end) { // 0开头的数字不合法
            return false;
    }
    int num = 0;
    for (int i = start; i <= end; i++) {
         if (s.charAt(i) > '9' || s.charAt(i) < '0') { // 遇到非数字字符不合法
            return false;
        }
        num = num * 10 + (s.charAt(i) - '0');
        if (num > 255) { // 如果大于255了不合法
            return false;
        }
    }
    return true;
}

完整代码:

class Solution {
    List<String> result = new ArrayList<>();

    public List<String> restoreIpAddresses(String s) {
        if (s.length() > 12) return result; // 算是剪枝了
        backTrack(s, 0, 0);
        return result;
    }

    // startIndex: 搜索的起始位置, pointNum:添加逗点的数量
    private void backTrack(String s, int startIndex, int pointNum) {
        if (pointNum == 3) {// 逗点数量为3时,分隔结束
            // 判断第四段⼦字符串是否合法,如果合法就放进result中
            if (isValid(s,startIndex,s.length()-1)) {
                result.add(s);
            }
            return;
        }
        for (int i = startIndex; i < s.length(); i++) {
            if (isValid(s, startIndex, i)) {
                s = s.substring(0, i + 1) + "." + s.substring(i + 1);    //在str的后⾯插⼊⼀个逗点
                pointNum++;
                backTrack(s, i + 2, pointNum);// 插⼊逗点之后下⼀个⼦串的起始位置为i+2
                pointNum--;// 回溯
                s = s.substring(0, i + 1) + s.substring(i + 2);// 回溯删掉逗点
            } else {
                break;
            }
        }
    }

    // 判断字符串s在左闭⼜闭区间[start, end]所组成的数字是否合法
    private Boolean isValid(String s, int start, int end) {
        if (start > end) {
            return false;
        }
        if (s.charAt(start) == '0' && start != end) { // 0开头的数字不合法
            return false;
        }
        int num = 0;
        for (int i = start; i <= end; i++) {
            if (s.charAt(i) > '9' || s.charAt(i) < '0') { // 遇到⾮数字字符不合法
                return false;
            }
            num = num * 10 + (s.charAt(i) - '0');
            if (num > 255) { // 如果⼤于255了不合法
                return false;
            }
        }
        return true;
    }
}


//方法二:比上面的方法时间复杂度低,更好地剪枝,优化时间复杂度
class Solution {
    List<String> result = new ArrayList<String>();
	StringBuilder stringBuilder = new StringBuilder();

	public List<String> restoreIpAddresses(String s) {
		restoreIpAddressesHandler(s, 0, 0);
		return result;
	}

	// number表示stringbuilder中ip段的数量
	public void restoreIpAddressesHandler(String s, int start, int number) {
		// 如果start等于s的长度并且ip段的数量是4,则加入结果集,并返回
		if (start == s.length() && number == 4) {
			result.add(stringBuilder.toString());
			return;
		}
		// 如果start等于s的长度但是ip段的数量不为4,或者ip段的数量为4但是start小于s的长度,则直接返回
		if (start == s.length() || number == 4) {
			return;
		}
		// 剪枝:ip段的长度最大是3,并且ip段处于[0,255]
		for (int i = start; i < s.length() && i - start < 3 && Integer.parseInt(s.substring(start, i + 1)) >= 0
				&& Integer.parseInt(s.substring(start, i + 1)) <= 255; i++) {
			// 如果ip段的长度大于1,并且第一位为0的话,continue
			if (i + 1 - start > 1 && s.charAt(start) - '0' == 0) {
				continue;
			}
			stringBuilder.append(s.substring(start, i + 1));
			// 当stringBuilder里的网段数量小于3时,才会加点;如果等于3,说明已经有3段了,最后一段不需要再加点
			if (number < 3) {
				stringBuilder.append(".");
			}
			number++;
			restoreIpAddressesHandler(s, i + 1, number);
			number--;
			// 删除当前stringBuilder最后一个网段,注意考虑点的数量的问题
			stringBuilder.delete(start + number, i + number + 2);
		}
	}
}
  • 时间复杂度: O(3^4),IP地址最多包含4个数字,每个数字最多有3种可能的分割方式,则搜索树的最大深度为4,每个节点最多有3个子节点。
  • 空间复杂度: O(n)

78.子集

力扣题目链接

给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。

说明:解集不能包含重复的子集。

示例:
输入: nums = [1,2,3]
输出:
[[3], [1],[2],[1,2,3], [1,3],[2,3], [1,2],[]]

  • 思路

那么组合问题和分割问题都是收集树的叶子节点,而子集问题是找树的所有节点!

以示例中nums = [1,2,3]为例把求子集抽象为树型结构,如下:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-k7TkaEep-1692681579101)(https://code-thinking.cdn.bcebos.com/pics/78.%E5%AD%90%E9%9B%86.png)]

从图中红线部分,可以看出遍历这个树的时候,把所有节点都记录下来,就是要求的子集集合

  • 回溯三部曲

  • 递归函数参数

全局变量数组path为子集收集元素,二维数组result存放子集组合。(也可以放到递归函数参数里)

递归函数参数在上面讲到了,需要startIndex。

代码如下:

List<List<Integer>> res=new ArrayList<>();
LinkedList<Integer> path=new LinkedList<>();
public void backtracking(int[] nums,int startIndex)
  • 递归终止条件

从图中可以看出:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OpUd3kOz-1692681579101)(https://code-thinking.cdn.bcebos.com/pics/78.%E5%AD%90%E9%9B%86.png)]

剩余集合为空的时候,就是叶子节点。

那么什么时候剩余集合为空呢?

就是startIndex已经大于数组的长度了,就终止了,因为没有元素可取了,代码如下:

if (startIndex >= nums.length){ //终止条件可不加
      return;
}

其实可以不需要加终止条件,因为startIndex >= nums.size(),本层for循环本来也结束了

  • 单层搜索逻辑

求取子集问题,不需要任何剪枝!因为子集就是要遍历整棵树

那么单层递归逻辑代码如下:

for (int i = startIndex; i < nums.length; i++){
   path.add(nums[i]);
   backtracking(nums, i + 1);
   path.removeLast();
}

完整代码

class Solution {
    List<List<Integer>> res=new ArrayList<>();
    LinkedList<Integer> path=new LinkedList<>();
    public List<List<Integer>> subsets(int[] nums) {
        backtracking(nums,0);
        return res;

    }

    public void backtracking(int[] nums,int startIndex){
        res.add(new ArrayList(path)); //遍历这个树的时候,把所有节点都记录下来,就是要求的子集集合。
         if (startIndex >= nums.length){ //终止条件可不加
            return;
        }
        for (int i = startIndex; i < nums.length; i++){
            path.add(nums[i]);
            backtracking(nums, i + 1);
            path.removeLast();
        }
    }
}
  • 时间复杂度: O(n * 2^n)
  • 空间复杂度: O(n)

90.子集II

力扣题目链接

给定一个可能包含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。

说明:解集不能包含重复的子集。

示例:

  • 输入: [1,2,2]

  • 输出: [ [2], [1], [1,2,2], [2,2], [1,2], [] ]

  • 思路

结合78子集和40组合总和Ⅱ

class Solution {
    List<List<Integer>> res=new ArrayList<>();
    LinkedList<Integer> path=new LinkedList<>();
    public List<List<Integer>> subsetsWithDup(int[] nums) {
        Arrays.sort(nums);  //去重需要排序
        backtracking(nums,0);
        return res;

    }
    public void backtracking(int[] nums,int startIndex){
        res.add(new ArrayList(path));
        for(int i=startIndex;i<nums.length;i++){
            // 跳过当前树层使用过的、相同的元素
            if(i>startIndex&&nums[i]==nums[i-1]){
                continue;
            }
            path.add(nums[i]);
            backtracking(nums,i+1);
            path.removeLast();
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值