javascript常用经典算法实例详解

再来看看经典的多项式求值问题:

给定一串实数An,An-1,...,A1,A0 和一个实数X,计算多项式Pn(x)的值

著名的Horner公式:

已经如何计算:

显然有:

这样只需要 N次乘法+N次加法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
//多项式求值
//N次乘法+N次加法搞定,伟大的改进!
function horner(A, x) {
   var n = A.length - 1
   var p = A[n];
   for ( var j = 0; j < n; j++) {
     p = x * p + A[n - j - 1];
   }
   return p;
}
//计算: y(2) = 3x^3 + 2x^2 + x -1;
var A = [-1, 1, 2, 3];
var y = horner(A, 2);
alert(y); //33

多数问题

一个元素个数为n的数组,希望快速找出其中大于出现次数>n/2的元素(该元素也称为多数元素)。通常可用于选票系统,快速判定某个候选人的票数是否过半。最优算法如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
//找出数组A中“可能存在”的多数元素
function candidate(A, m) {
   var count = 1, c = A[m], n = A.length - 1;
   while (m < n && count > 0) {
     m++;
     if (A[m] == c) {
       count++;
     }
     else {
       count--;
     }
   }
   if (m == n) {
     return c;
   }
   else {
     return candidate(A, m + 1);
   }
}
//寻找多数元素
//时间复杂度O(n)
function majority(A) {
   var c = candidate(A, 0);
   var count = 0;
   //找出的c,可能是多数元素,也可能不是,
   //必须再数一遍,以确保结果正确
   for ( var i = 0; i < A.length; i++) {
     if (A[i] == c) {
       count++;
     }
   }
   //如果过半,则确定为多数元素
   if (count > Math.floor(A.length / 2)) {
     return c;
   }
   return null ;
}
var m = majority([3, 2, 3, 3, 4, 3]);
alert(m);

以上算法基于这样一个结论:在原序列中去除两个不同的元素后,那么在原序列中的多数元素在新序列中还是多数元素

证明如下:

如果原序列的元素个数为n,多数元素出现的次数为x,则 x/n > 1/2
去掉二个不同的元素后,
a)如果去掉的元素中不包括多数元素,则新序列中 ,原先的多数元素个数/新序列元素总数 = x/(n-2) ,因为x/n > 1/2 ,所以 x/(n-2) 也必然>1/2
b)如果去掉的元素中包含多数元素,则新序列中 ,原先的多数元素个数/新序列元素总数 = (x-1)/(n-2) ,因为x/n > 1/2  =》 x>n/2 代入 (x-1)/(n-2) 中,
有 (x-1)/(n-2) > (n/2 -1)/(n-2) = 2(n-2)/(n-2) = 1/2

下一个问题:全排列

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
function swap(A, i, j) {
   var t = A[i];
   A[i] = A[j];
   A[j] = t;
}
function println(msg) {
   document.write(msg + "<br/>" );
}
//全排列算法
function perm(P, m) {
   var n = P.length - 1;
   if (m == n) {
     //完成一个新排列时,输出
     println(P);
     return ;
   }
   for ( var j = m; j <= n; j++) {
     //将起始元素与后面的每个元素交换
     swap(P, j, m);
     //在前m个元素已经排好的基础上
     //再加一个元素进行新排列
     perm(P, m + 1);
     //把j与m换回来,恢复递归调用前的“现场",
     //否则因为递归调用前,swap已经将原顺序破坏了,
     //导致后面生成排序时,可能生成重复
     swap(P, j, m);
   }
}
perm([1, 2, 3], 0);
//1,2,3
//1,3,2
//2,1,3
//2,3,1
//3,2,1
//3,1,2

分治法

要点:将问题划分成二个子问题时,尽量让子问题的规模大致相等。这样才能最大程度的体现一分为二,将问题规模以对数折半缩小的优势。


//打印输出(调试用)
function println(msg) {
   document.write(msg + "<br/>" );
}
//数组中i,j位置的元素交换(辅助函数)
function swap(A, i, j) {
   var t = A[i];
   A[i] = A[j];
   A[j] = t;
}
//寻找数组A中的最大、最小值(分治法实现)
function findMinMaxDiv(A, low, high) {
   //最小规模子问题的解
   if (high - low == 1) {
     if (A[low] < A[high]) {
       return [A[low], A[high]];
     }
     else {
       return [A[high], A[low]];
     }
   }
   var mid = Math.floor((low + high) / 2);
   //在前一半元素中寻找子问题的解
   var r1 = findMinMaxDiv(A, low, mid);
   //在后一半元素中寻找子问题的解
   var r2 = findMinMaxDiv(A, mid + 1, high);
   //把二部分的解合并
   var x = r1[0] > r2[0] ? r2[0] : r1[0];
   var y = r1[1] > r2[1] ? r1[1] : r2[1];
   return [x, y];
}
var r = findMinMaxDiv([1, 2, 3, 4, 5, 6, 7, 8], 0, 7);
println(r); //1,8
//二分搜索(分治法实现)
//输入:A为已按非降序排列的数组
//x 为要搜索的值
//low,high搜索的起、止索引范围
//返回:如果找到,返回下标,否则返回-1
function binarySearchDiv(A, x, low, high) {
   if (low > high) {
     return -1;
   }
   var mid = Math.floor((low + high) / 2);
   if (x == A[mid]) {
     return mid;
   }
   else if (x < A[mid]) {
     return binarySearchDiv(A, x, low, mid - 1);
   }
   else {
     return binarySearchDiv(A, x, mid + 1, high);
   }
}
var f = binarySearchDiv([1, 2, 3, 4, 5, 6, 7], 4, 0, 6);
println(f); //3
//将数组A,以low位置的元素为界,划分为前后二半
//n为待处理的索引范围上限
function split(A, low, n) {
   if (n >= A.length - 1) {
     n = A.length - 1;
   }
   var i = low;
   var x = A[low];
   //二个指针一前一后“跟随”,
   //最前面的指针发现有元素比分界元素小时,换到前半部
   //后面的指针再紧跟上,“夫唱妇随”一路到头
   for ( var j = low + 1; j <= n; j++) {
     if (A[j] <= x) {
       i++;
       if (i != j) {
         swap(A, i, j);
       }
     }
   }
   //经过上面的折腾后,除low元素外,其它的元素均以就位
   //最后需要把low与最后一个比low位置小的元素交换,
   //以便把low放在分水岭位置上
   swap(A, low, i);
   return [A, i];
}
var A = [5, 1, 2, 6, 3];
var b = split(A, 0, A.length - 1);
println(b[0]); //3,1,2,5,6
//快速排序
function quickSort(A, low, high) {
   var w = high;
   if (low < high) {
     var t = split(A, low, w); //分治思路,先分成二半
     w = t[1];
     //在前一半求解
     quickSort(A, low, w - 1);
     //在后一半求解
     quickSort(A, w + 1, high);
   }
}
var A = [5, 6, 4, 7, 3];
quickSort(A, 0, A.length - 1);
println(A); //3,4,5,6,7

split算法的思想应用

设A[1..n]是一个整数集,给出一算法重排数组A中元素,使得所有的负整数放到所有非负整数的左边,你的算法的运行时间应当为Θ(n)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
function sort1(A) {
   var i = 0, j = A.length - 1;
   while (i < j) {
     if (A[i] >= 0 && A[j] >= 0) {
       j--;
     }
     else if (A[i] < 0 && A[j] < 0) {
       i++;
     }
     else if (A[i] > 0 && A[j] < 0) {
       swap(A, i, j);
       i++;
       j--;
     }
     else {
       i++;
       j--;
     }
   }
}
function sort2(A) {
   if (A.length <= 1) { return ; }
   var i = 0;
   for ( var j = i + 1; j < A.length; j++) {
     if (A[j] < 0 && A[i] >= 0) {
       swap(A, i, j);
       i++;
     }
   }
}
var a = [1, -2, 3, -4, 5, -6, 0];
sort1(a);
println(a); //-6,-2,-4,3,5,1,0
var b = [1, -2, 3, -4, 5, -6, 0];
sort2(b);
println(b); //-2,-4,-6,1,5,3,0
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值